Skip to main content
Log in

The Effect of Chopped Carbon Fiber on Morphology, Electromagnetic, and Mechanical Properties of Glass/Epoxy Composites for Aerospace Application

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The objective of the present work was to study the effect of varied weight percentages of chopped carbon fiber (CCF) as functional material in glass fabric-reinforced plastic (GFRP) composites. The electromagnetic and mechanical properties of these functional composites were analyzed to explore the potential applications in the aerospace/defense industry as a stealth solution. Developed composites were mechanically tested with variable crosshead speed (1–3 mm/min.). These composites showed degradation in tensile strength with enhancement in the concentration of CCF. However, flexural strength and interlaminar shear strength decreased initially and then increased. GFRP composite with 0.1 weight % of CCF loading showed electromagnetic absorption of 16.3 dB at 9.20 GHz (X-band). Microstructural analysis was conducted using FESEM which also supports the mechanical behavior of composites. Taguchi method was applied to optimize the process parameters of crosshead speed and loading of functional material.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vinoy K J, and Jha R M, Radar absorbing materials from theory to design and characterization, Kluwer, Boston (1996).

    Book  Google Scholar 

  2. Knott E, Shaeffer J, and Tuley M, Radar Cross Section, Artech House, Boston, Norwood (1985).

  3. Irving P E, and Soutis C, Polymer Composites in the Aerospace Industry, Woodhead Publishing, Swaston (2015).

    Google Scholar 

  4. Schueler R, Petermann J, Schulte K, and Wentzel H P, J Appl Polym Sci 63 (1997) 1741.

    Article  CAS  Google Scholar 

  5. Oh J H, Oh K S, Kim C G, and Hong C S, Composite B Eng 35 (2004) 49.

    Article  Google Scholar 

  6. Chin W S, and Lee D G, Compos Struct 77 (2007) 457.

    Article  Google Scholar 

  7. Baskey H B, Akhtar M J, and Shami T C, J Electromagn Waves Appl 28 (2014) 1703.

    Article  Google Scholar 

  8. Santhosi B, Ramji K, and Rao N M, Polym Polym Compos 29 (2021) 444.

    CAS  Google Scholar 

  9. Kasgoz A, Polym Polym Compos 29 (2021) 1377.

    CAS  Google Scholar 

  10. Abbas S M, Dixit A K, Chatterjee R, and Goel T C, J Magn Magn Mater 309 (2007) 20.

    Article  CAS  Google Scholar 

  11. Chen W, Zhu X, Liu Q, and Fu M, Mater Lett 209 (2017) 425.

    Article  CAS  Google Scholar 

  12. Pratap V, Soni A K, Dayal S, Abbas S, Siddiqui A M, and Prasad N E, J Magn Magn Mater 465 (2018) 540.

    Article  CAS  Google Scholar 

  13. Chu Z, Cheng H, Xie W, and Sun L, Ceram Intl 38 (2012) 4867.

    Article  CAS  Google Scholar 

  14. Gang F J, Mei Z D, Cheng Z W, and Fa L, J Inorg Mater 27 (2012) 1223.

    Google Scholar 

  15. Li L, and Chung D D L, Composites 25 (1994) 215.

    Article  CAS  Google Scholar 

  16. Cao M S, Song W L, Hou Z L, Wen B, and Yuan J, Carbon 48 (2010) 788.

    Article  CAS  Google Scholar 

  17. Chu Z, Cheng H, Xie W, and Sun L, Ceram Int 38 (2012) 4867.

    Article  CAS  Google Scholar 

  18. Min D, Zhou W, Qing Y, Luo F, and Zhu D, J Alloys Compd 744 (2018) 629.

    Article  CAS  Google Scholar 

  19. Liu Z H, Tao R, Luo P, Shu X, and Ban G D, RSC Adv 7 (2017) 46060.

    Article  CAS  Google Scholar 

  20. Junaedi H, Baig M, Dawood A, Albahkali E, and Almajid A, Polymers 12 (2020) 2851.

    Article  CAS  Google Scholar 

  21. Zhang H, Zhang Z, and Breidt C, Compos Sci Technol 64 (2004) 2021.

    Article  CAS  Google Scholar 

  22. ASTM D3039/D3039M-17. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken PA (2017).

  23. ASTM D7264/D7264M-15. Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken PA (2015).

  24. ASTM D2344/D2344M-16. Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates. ASTM International: West Conshohocken, PA (2016).

  25. Nassar A, and Nassar E, Heliyon 6 (2020) 1.

    Google Scholar 

  26. Verma R, Rathod M J, and Goyal R K, in IOP Conf Series Mater Sci Eng 798 (2020) 012031.

  27. Choi I, and Lee D, Compos Struct 122 (2015) 23.

    Article  Google Scholar 

  28. Rezania J, and Rahimi H, J Compos Mater 51 (2017) 2263.

    Article  CAS  Google Scholar 

  29. Roy R K, A primer on the Taguchi Method, Society of Manufacturing Engineering. Dearborn: Mich, USA (1990).

  30. Montgomery D C, Design and analysis of experiments, John Willey, New York (2001).

    Google Scholar 

  31. Neo C P, and Varadan V K, IEEE Trans Electromag Compat 46 (2004) 102.

    Article  Google Scholar 

  32. Ghodgaonkar D K, Varadan V V, and Varadan V K, IEEE Trans Instrum Measure 37 (1989) 789.

    Article  Google Scholar 

  33. Fan Z, Luo G, Zhang Z, Zhou L, and Wei F, J Mater Sci Eng B 132 (2006) 1.

    Article  Google Scholar 

  34. Khurram A A, Rakha S A, Zhou P, Shafi M, and Munir A, J Appl Phys 118 (2015) 044105

    Article  Google Scholar 

  35. Muhammad A A, Peng W, Zare Y, and Rhee K Y, J Nano Res Lett 13 (2018) 214.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director of DMSRDE and IIT Kanpur for providing the infrastructural support to conduct experiments and rigorous analysis. We are also thankful to DRDO for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Dubey, A., Agarwal, S. et al. The Effect of Chopped Carbon Fiber on Morphology, Electromagnetic, and Mechanical Properties of Glass/Epoxy Composites for Aerospace Application. Trans Indian Inst Met 76, 2231–2242 (2023). https://doi.org/10.1007/s12666-023-02932-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02932-2

Keywords

Navigation