Skip to main content
Log in

Optimization of Ball Mill Grinding of a Limestone-Type Brecciated Uranium Ore

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The effect of ball size and interstitial filling on the performance of dry ball mill grinding was investigated for a limestone-type brecciated uranium ore. The optimum grinding was obtained with the combination of different balls (12.7–37.5 mm) and interstitial filling of 50% (20% ball filling ratio at fixed material filling ratio = 4%). The net power consumption in a ball mill is proportional to the specific rate of breakage. A mathematical relation for the specific rate of breakage as a function of ball filling ratio was developed. The grinding process was modeled by the combined use of matrix and population balance model. The cumbersome method of mono-size fraction in the determination of the selection function was avoided, and instead, it was determined by the back-calculation method. The estimated parameters of the Austin selection function for a particular ball size (31.7 mm) were successfully applied in predicting the ground product size distribution (R2 > 0.95) for both a given feed size distribution and a given feed rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bourcier D, Chem. Eng. Sci. 144 (2016) 176. https://doi.org/10.1016/j.ces.2016.01.023.hal-01279589

    Article  CAS  Google Scholar 

  2. Mulenga F K, Powder Technol. 311 (2017) 398.

    Article  CAS  Google Scholar 

  3. Mulenga F K, Powder Technol. 317 (2017) 6.

    Article  CAS  Google Scholar 

  4. Patricia M C, Rajamani F, Tavares R K, and Luis M, Minerals 9 (2019) 366.

    Google Scholar 

  5. Fuerstenau D W, Kapur P C, and De A, KONA Powder Part. J. 21 (2003) 121.

    Article  CAS  Google Scholar 

  6. Cisternas L A, Lucay F A, and Botero Y L, Minerals 10 (2020) 22.

    Article  CAS  Google Scholar 

  7. Jenniree V N, Alfredo L C V, and Juan M M A, Metals 11 (2021) 71.

    Google Scholar 

  8. Tavares L M, KONA Powder Particle J. 34 (2017) 106.

    Article  Google Scholar 

  9. Faitli J, and Czel P, Chem. Eng. Technol 37 (2014) 779.

    Article  CAS  Google Scholar 

  10. Lee H, Kim K, and Lee H, Adv. Powder Technol 30 (2019) 2517.

    Article  Google Scholar 

  11. Deniz V Energy Sources Part A, 36(2014) 292–300.

  12. Deniz V, Granular Matter 13 (2011) 447.

    Article  CAS  Google Scholar 

  13. Petrakis E, and Komnitsas K, Minerals 7 (2017) 67.

    Article  Google Scholar 

  14. Gupta V K, and Sharma S, Adv. Powder Technol. 25 (2014), (2014) 625.

    Article  Google Scholar 

  15. Wang X, Gui W, Yang C, and Wang Y, Int. J. Miner. Process. 98 (2011) 113.

    Article  CAS  Google Scholar 

  16. Danha G, Hildebrandt D, Glasser D, and Bhondayi C, Powder Technol. 274 (2015) 14.

    Article  CAS  Google Scholar 

  17. Shi F, and Xie W, Miner. Eng. 70 (2015) 130.

    Article  CAS  Google Scholar 

  18. Shi F, and Xie W, Miner. Eng. 86 (2016) 66.

    Article  CAS  Google Scholar 

  19. Umucu Y, Altınigne M Y, and Deniz V, J. Pol. Miner. Eng. Soc. 15 (2014) 113–117.

    Google Scholar 

  20. Olejnik T P, Physicochem. Probl. Miner. Process. 49 (2013) 407.

    Google Scholar 

  21. Shin H, Lee S, Jung H S, and Kim J B, Ceram Int 39 (2013) 8963.

    Article  CAS  Google Scholar 

  22. Qian H Y, Kong Q G, and Zhang B L, Powder Technol. 235 (2013) 422.

    Article  CAS  Google Scholar 

  23. Cayirli S, Physicochem. Probl. Miner. Process. 54 (2018) 751.

    CAS  Google Scholar 

  24. Jenniree V N, Teresa L, and Juan M M A, Metals 10 (2020) 1687.

    Article  Google Scholar 

  25. Carvalho R M, and Tavares M, Miner. Eng. 43–44 (2013), (2013) 91.

    Article  Google Scholar 

  26. Shoji K, Austin L G, Smalia F, Brame K, and Lucie P T, Powder Technol 31 (1982) 121.

    Article  Google Scholar 

  27. Petrakis E, Stamboliadis E, and Komnitsas K, KONA Powder Part. J. 34 (2017) 213.

    Article  CAS  Google Scholar 

  28. Deniz V, and Onur T, Int. J. Miner. Process 67 (2002) 71.

    Article  CAS  Google Scholar 

  29. Bond F C, British Chem. Eng. 6 (1960) 378.

    CAS  Google Scholar 

  30. Beeck R, Zement-Kalk-Gips 23 (1970) 413.

    Google Scholar 

  31. Ipek H, and Göktepe F, Probl. Miner. Process. 47 (2011) 183.

    CAS  Google Scholar 

  32. Austin L G, and Luckie P T, Powder Technol 5 (1972), (1972) 215.

    Article  Google Scholar 

  33. Oleg D Neikov. 2019. Handbook of Non-Ferrous Metal Powder, Technologies and Applications, (Second Edition) 65–90. https://doi.org/10.1016/B978-0-08-100543-9.00002-6.

Download references

Acknowledgements

The authors are thankful to Dr. T. Sreenivas, Head, Mineral Processing Division, and Dr. Vivekanand Kain, Director, Materials Group, Bhabha Atomic Research Centre, Mumbai, for their interest and encouragement in the studies. The authors also express gratitude to their colleagues for chemical analysis. Gratitude is also extended to UCIL and AMD for supplying the uranium ore sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Serajuddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serajuddin, M., Mukhopadhyay, S. & Kacham, A.R. Optimization of Ball Mill Grinding of a Limestone-Type Brecciated Uranium Ore. Trans Indian Inst Met 76, 2253–2261 (2023). https://doi.org/10.1007/s12666-023-02926-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02926-0

Keywords

Navigation