Skip to main content
Log in

In-Vitro Corrosion and Wear Studies of Ceramic Layers on Additively Manufactured Zr Metal for Implant Applications

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present study, an attempt has been made to develop in-situ grown ceramic layer on additively manufactured Zr metal by thermal oxidation (TO) treatment. Detailed characterization and testings were performed to determine the thickness of the ceramic layer, oxide phases, hardness, surface roughness, wettability in-vitro wear, and in-vitro corrosion resistance of theses oxidized specimens. The X-ray diffraction analysis confirmed the formation of ZrO2 in the in-situ oxide layer and its thickness increased significantly at higher oxidation temperatures. However, among the samples, lowest in-vitro wear rate (2.12 ± 0.36 × 10–6 mm3/N m) was demonstrated by the samples oxidized at 600 °C for 6 h. Further this obtained wear rate was correleted with thickness of oxide layer, contact angle, surface rougness, and hardness. It is also noticed that the formation of oxide phases on Zr significantly increase the in-vitro corrosion resistance compared to untreated Zr substrate in Hanks Balanced Salt solution (HBSS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Buford A, and Goswami T, Mater. Des. 25 (2004) 385. https://doi.org/10.1016/j.matdes.2003.11.010

    Article  CAS  Google Scholar 

  2. Chevalier J, and Gremillard L, J. Eur. Ceram. Soc. 29 (2009) 1245. https://doi.org/10.1016/j.jeurceramsoc.2008.08.025

    Article  CAS  Google Scholar 

  3. Kraay M J, Thomas R D, Rimnac C M, Fitzgerald S J, and Goldberg V M, Clin. Orthop. Relat. Res. 453 (2006) 86. https://doi.org/10.1097/01.blo.0000246544.95316.1f

    Article  Google Scholar 

  4. Sandhyarani M, Ashfaq M, Arunnellaiappan T, Selvan M P, Subramanian S, and Rameshbabu N, Surf. Coatings Technol. 269 (2015) 286. https://doi.org/10.1016/j.surfcoat.2015.03.001

    Article  CAS  Google Scholar 

  5. Karidakis G K, and Karachalios T, Clin. Orthop. Relat. Res. 473 (2015) 3836. https://doi.org/10.1007/s11999-015-4503-7

    Article  Google Scholar 

  6. Balla V K, Xue W, Bose S, and Bandyopadhyay A, Acta Biomater. 5 (2009) 2800. https://doi.org/10.1016/j.actbio.2009.03.032

    Article  CAS  Google Scholar 

  7. B. V. Krishna, S. Bose, and A. Bandyopadhyay, J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 89, pp. 481, 2009. https://doi.org/10.1002/jbm.b.31238.

  8. L. N. Khanlar, A. S. Rios, A. Tahmaseb, and A. Zandinejad, Dent. J., vol. 9, 2021. https://doi.org/10.3390/DJ9090104.

  9. Deckers J, Vleugels J, and Kruth J P, J. Ceram. Sci. Technol. 5 (2014) 245. https://doi.org/10.4416/JCST2014-00032

    Article  Google Scholar 

  10. Hesse H, and Özcan M, J. Adhes. Sci. Technol. 35 (2021) 2529. https://doi.org/10.1080/01694243.2021.1899699

    Article  CAS  Google Scholar 

  11. Das M, Balla V K, Kumar T S S, and Manna I, Trans. Indian Ceram. Soc. 72 (2013) 169. https://doi.org/10.1080/0371750X.2013.851619

    Article  CAS  Google Scholar 

  12. Greiner C, Oppenheimer S M, and Dunand D C, Acta Biomater. 1 (2005) 705. https://doi.org/10.1016/j.actbio.2005.07.005

    Article  Google Scholar 

  13. M. K. Harman, S. A. Banks, and W. Andrew Hodge, J. Arthroplasty, vol. 12, pp. 938, 1997. https://doi.org/10.1016/S0883-5403(97)90164-9.

  14. Reger N C, Balla V K, Das M, and Bhargava A K, Surf. Coatings Technol. 334 (2018) 357–364. https://doi.org/10.1016/j.surfcoat.2017.11.064

    Article  CAS  Google Scholar 

  15. Bailey R, and Sun Y, Wear 308 (2013) 61–70. https://doi.org/10.1016/j.wear.2013.09.020

    Article  CAS  Google Scholar 

  16. Wallwork G R, Rosa C J, and Smeltzer W W, Corros. Sci. 5 (1965) 1–4. https://doi.org/10.1016/s0010-938x(65)90471-3

    Article  Google Scholar 

  17. D. L. Douglass, Corros. Sci., vol. 5, 1965. https://doi.org/10.1016/s0010-938x(65)90592-5.

  18. Waizy H, et al., Biomed. Eng. Online 11 (2012) 12. https://doi.org/10.1186/1475-925X-11-12

    Article  Google Scholar 

  19. V. Raghava, Material Science and Engineering. PHI Learning, N. Delhi, 2011.

  20. Nishino Y, Krauss A R, Lin Y, and Gruen D M, J. Nucl. Mater. 228 (1996) 346. https://doi.org/10.1016/0022-3115(95)00194-8

    Article  CAS  Google Scholar 

  21. J. I. C. S. McDeavitt, G. Billings, Adv Spec Mater, 2001, pp. 79. 111379668.

  22. Yoo H I, Koo B J, Hong J O, Hwang I S, and Jeong Y H, J Nucl. Mater. 299 (2001) 235–241. https://doi.org/10.1016/S0022-3115(01)00695-X

    Article  CAS  Google Scholar 

  23. Strnad G, Chirila N, Petrovan C, and Russu O, Procedia Technol. 22 (2016) 946. https://doi.org/10.1016/j.protcy.2016.01.094

    Article  Google Scholar 

  24. G. S. Kaliaraj and N. Kumar, Mater. Res. Express, vol. 5, 2018. https://doi.org/10.1088/2053-1591/aaaeea.

  25. Semlitsch M, Lehmann M, Weber H, Doerre E, and Willert H G, J. Biomed. Mater. Res. 11 (1977) 537. https://doi.org/10.1002/jbm.820110409

    Article  CAS  Google Scholar 

  26. Agathopoulos S, and Nikolopoulos P, J. Biomed. Mater. Res. 29 (1995) 421. https://doi.org/10.1002/jbm.820290402

    Article  CAS  Google Scholar 

  27. Alansari A, and Sun Y, Surf. Coatings Technol. 309 (2017) 195. https://doi.org/10.1016/j.surfcoat.2016.11.070

    Article  CAS  Google Scholar 

  28. S. C. Scholes and A. Unsworth, Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 214, pp. 49, 2000. https://doi.org/10.1243/0954411001535237.

  29. Holmberg K, Laukkanen A, Ronkainen H, Wallin K, and Varjus S, Wear 254 (2003) 278. https://doi.org/10.1016/S0043-1648(02)00297-1

    Article  CAS  Google Scholar 

  30. Xie Y, and Hawthorne H M, Surf. Coatings Technol. 141 (2001) 15. https://doi.org/10.1016/S0257-8972(01)01130-6

    Article  CAS  Google Scholar 

  31. Pawar V, Weaver C, and Jani S, Appl. Surf. Sci. 257, (2011) 6118. https://doi.org/10.1016/j.apsusc.2011.02.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author N.C.R. would like to acknowledge the support and permission of the Directors of CSIR-CGCRI Kolkata and Malaviya National Institute of Technology Jaipur (MNIT) Jaipur to carry out this research work in their institutes during M. Tech Dissertation work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nimu Chand Reger.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reger, N.C., Devi, K.B., Balla, V.K. et al. In-Vitro Corrosion and Wear Studies of Ceramic Layers on Additively Manufactured Zr Metal for Implant Applications. Trans Indian Inst Met 76, 1949–1958 (2023). https://doi.org/10.1007/s12666-023-02893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02893-6

Keywords

Navigation