Skip to main content
Log in

Microstructure and Properties of AlCrCoFexNiCu High-Entropy Alloy Coating Synthesized via Cold Spraying-Assisted Induction Remelting Method

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

AlCrCoFexNiCu (x = 0, 0.5, 1, 1.5, 2) HEA coatings were prepared on the surface of 45# steel using cold spraying-assisted induction remelting. The effect of Fe content on microstructure, hardness, and wear resistance of the alloy coating was analyzed using an X-ray diffractometer, a scanning electron microscope, a transmission electron microscope, an energy dispersive, a microhardness tester, and friction and wear testing machine. The results showed that the alloy coating was composed of an (FCC + BCC) phase. With the increasing of Fe content, the microstructure of AlCrCoFexNiCu HEA coating dendrite gradually coarsened its grain. When x = 1, the AlCrCoFeNiCu HEA coating had the largest atomic size difference (“δ”), and the lattice strain was the largest. With the increase in Fe content, the hardness of the coating initially increased and then, decreased. When the Fe element content x = 1, the hardness of the alloy coating reached the maximum value of 560.4 HV, the minimum friction coefficient of the alloy coating was 0.361, and the wear rate was 3.97 × 10−5 mm3/(N*m).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004) 299. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  2. Cantor B, Chang I T H, Knight P, and Vincent A J B, Mater Sci Eng A 375 (2004) 213. https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  3. Otto F, Yang Y, Bei H, and George E P, Acta Mater 61 (2013) 2628. https://doi.org/10.1016/j.actamat.2013.01.042

    Article  CAS  Google Scholar 

  4. Qiu Y, Thomas S, Gibson M A, Fraser H L, and Birbilis N, npj Mater Degrad 1 (2017) 15. https://doi.org/10.1038/s41529-017-0009-y

    Article  Google Scholar 

  5. Chuang M H, Tsai M H, Wang W R, Lin S J, and Yeh J W, Acta Mater 59 (2011) 6308. https://doi.org/10.1016/j.actamat.2011.06.041

    Article  CAS  Google Scholar 

  6. Fu Z Q, Jiang L, Wardini J L, Wen H, Xiong W, Zhang D, Zhou Y Z, Rupert T J, Chen W P, and Lavernia E J, Advances 10 (2018) 8712. https://doi.org/10.1126/sciadv.aat8712

    Article  CAS  Google Scholar 

  7. Fan B, Li C G, Shen C, Zhang X J, Sun X G, and Feng X S, Trans Indian Inst Met 75 (2022) 1967. https://doi.org/10.1007/s12666-022-02580-y

    Article  CAS  Google Scholar 

  8. Liu J, Guan Y, Xia X C, Peng P, Ding Q F, and Liu X T, Crystals 10 (2020) 320. https://doi.org/10.3390/cryst10040320

    Article  CAS  Google Scholar 

  9. Hruška P, Lukáč F, Cichoň S, Vondráček M, Čížek J, Fekete L, Lančok J, Veselý J, Minárik P, Cieslar M, Melikhova O, Kmječ T, Liedke M O, Butterling M, and Wagner A, J Alloy Compd 869 (2020) 157978. https://doi.org/10.1016/j.jallcom.2020.157978

    Article  CAS  Google Scholar 

  10. Liang Y H, Li C L, and Hsueh C H, Coatings 11 (2021) 1539. https://doi.org/10.3390/coatings11121539

    Article  CAS  Google Scholar 

  11. Nikbakht R, Cojocaru C V, Aghasibeig M Y, Irissou É, Kim T S, Kim H S, and Jodoin B, J Therm Spray Technol 31 (2022) 1129. https://doi.org/10.1016/j.jmst.2018.12.015

    Article  CAS  Google Scholar 

  12. Sova A, Doubenskaia M, Trofimov E, Samodurova M, Ulianitsky V, and Smurov I, Trans Indian Inst Met 74 (2021) 559. https://doi.org/10.1007/s12666-020-02165-7

    Article  CAS  Google Scholar 

  13. Hui J, Han K, Li D, and Cao Z Q, Crystals 8 (2018) 409. https://doi.org/10.3390/cryst8110409

    Article  CAS  Google Scholar 

  14. Soare V, Burada M, Constantin I, Mitrică D, Bădiliţă V, Caragea A, and Târcolea M, Appl Surf Sci 358 (2015) 533. https://doi.org/10.1016/j.apsusc.2015.07.142

    Article  CAS  Google Scholar 

  15. Zeng Q F, and Xu Y, Mater Today Commun 24 (2020) 101261. https://doi.org/10.1016/j.mtcomm.2020.101261

    Article  CAS  Google Scholar 

  16. Chen X Y, Yan L, Karnati S, Zhang Y, and Liou F, Coatings 7 (2017) 47. https://doi.org/10.3390/coatings7040047

    Article  CAS  Google Scholar 

  17. Lehtonen J, Koivuluoto H, Ge Y L, Juselius A, and Hannula S P, Coatings 10 (2020) 53. https://doi.org/10.3390/coatings10010053

    Article  CAS  Google Scholar 

  18. Yin S, Li W Y, Song B, Yan X C, Kuang M, Xu Y X, Wen K, and Lupoi R, Mater Sci Technol 35 (2019) 1003. https://doi.org/10.1016/j.jmst.2018.12.015

    Article  CAS  Google Scholar 

  19. Anupam A, Kumar S, Chavan N M, Murty B S, and Kottada R S, J Mater Res 34 (2019) 1. https://doi.org/10.1557/jmr.2019.38

    Article  CAS  Google Scholar 

  20. Han C, Ma L, Sui X D, Ma B J, and Huang G S, Coatings 11 (2021) 695. https://doi.org/10.3390/coatings11060695

    Article  CAS  Google Scholar 

  21. Feng L, Yang W J, Ma K, Yuan Y D, An G S, and Li W S, Mater Technol 37 (2022) 2567. https://doi.org/10.1080/10667857.2022.2046929

    Article  CAS  Google Scholar 

  22. Wang Y, Lu X X, Yuan N Y, and Ding J N, J Alloy Compd 849 (2020) 156. https://doi.org/10.1016/j.jallcom.2020.156222

    Article  CAS  Google Scholar 

  23. Yang Y, Aprilia A, Wu K, Tan S C, and Zhou W, Metals 12 (2022) 396. https://doi.org/10.3390/met12030396

    Article  CAS  Google Scholar 

  24. Yang X, and Zhang Y, Mater Chem Phys 132 (2012) 233. https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  CAS  Google Scholar 

  25. Zhou Y J, Zhang Y, Wang F J, and Chen G L, Applphyslett 92 (2008) 29. https://doi.org/10.1063/1.2938690

    Article  CAS  Google Scholar 

  26. Cui Y, Shen J Q, Manladan S M, Geng K, and Hu S S, Appl Surf Sci 512 (2022) 145736. https://doi.org/10.1016/j.apsusc.2020.145736

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The China Postdoctoral Science Foundation (2018-63-200618-34), and the Gansu Youth Doctoral Fund (2021QB-043). CNNP Nuclear Power Operation Management Co., Ltd (QS4FY-22003224)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Feng.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Xiao, G., Ma, K. et al. Microstructure and Properties of AlCrCoFexNiCu High-Entropy Alloy Coating Synthesized via Cold Spraying-Assisted Induction Remelting Method. Trans Indian Inst Met 76, 2063–2072 (2023). https://doi.org/10.1007/s12666-023-02877-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02877-6

Keywords

Navigation