Skip to main content
Log in

Effect of Machining Damage on the Tensile, Flexural, and Compressive Characteristics of the Undrilled and Open-Hole Carbon Fiber-Reinforced Polymer Laminated Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Carbon fiber-reinforced polymer (CFRP) composite is extensively exploited in numerous industrial and non-industrial applications because of its extraordinary mechanical characteristics. Most of the time, the CFRP composite structures are exposed to extreme and heavy machining process and get damaged. In the component assembly of the structures, one of the conventional damages that still occurs on the CFRP laminates are holes that are created on the specimen by drilling tools. Therefore, the mechanical properties of open-hole CFRP laminates are important issue that should be addressed by engineers. For this purpose, the tensile, flexural and compressive strengths of an open-hole CFRP laminate are experimentally and numerically determined in this research. A finite element method is developed to validate the precision of the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hashemi S, and Jafari A A, International Journal of Applied Mechanics. 12 (2020) 2050003. https://doi.org/10.1142/S1758825120500039

    Article  Google Scholar 

  2. Hashemi S, and Jafari A A, International Journal of Structural Stability and Dynamics. 20 (2020) 2050097. https://doi.org/10.1142/S0219455420500972

    Article  Google Scholar 

  3. Hashemi S, and Jafari A A, Advances in Applied Mathematics and Mechanics. 13 (2021) 914. https://doi.org/10.4208/aamm.OA-2019-0333

    Article  Google Scholar 

  4. Hashemi S, Zamani F, Eftekhari A, Rostamiyan Y, and Khaledi H, Australian Journal of Mechanical Engineering (2021). https://doi.org/10.1080/14484846.2021.1918868

    Article  Google Scholar 

  5. Hashemi S, Shahri P K, Beigzadeh S, Zamani F, Eratbeni M G, Mahdavi M, Heidari A, Khaledi H, and Abadi M R, International Journal of Applied Mechanics. 14 (2022) 2150131. https://doi.org/10.1142/S1758825121501313

    Article  Google Scholar 

  6. Hashemi S, and Jafari A A, Iranian Journal of Mechanical Engineering Transactions of the ISME. 21 (2020) 110.

    Google Scholar 

  7. Hashemi S, and Jafari A A, Iranian Journal of Mechanical Engineering Transactions of the ISME. (2020). https://doi.org/10.30506/jmee.2020.112273.1193

    Article  Google Scholar 

  8. Hashemi S, and Jafari A A, Journal of Science and Technology of Composites. 6 (2020) 637. https://doi.org/10.22068/jstc.2019.106866.1542

    Article  Google Scholar 

  9. Hashemi S, and Jafari A A, Journal of Solid and Fluid Mechanics. 10 (2020) 31. https://doi.org/10.22044/jsfm.2020.9012.3046

    Article  Google Scholar 

  10. Sahoo S S, Singh V K, and Panda S K, Journal of Engineering Mechanics 142 (2016) 04016008.

    Article  Google Scholar 

  11. Sahoo S S, Panda S K, Singh V K, and Mahapatra T R, Archive of Applied Mechanics 87 (2017) 315.

    Article  Google Scholar 

  12. Dewangan H C, Sharma N, and Panda S K, AIAA Journal 60 (2022) 985.

    Article  Google Scholar 

  13. Dewangan H C, Panda S K and Hirwani C K, Numerical deflection and stress prediction of cutout borne damaged composite flat/curved panel structure. In Structures, Elsevier (2021) Vol 31, pp 660.

  14. Dewangan H C and Panda S K, Numerical thermoelastic eigenfrequency prediction of damaged layered shell panel with concentric/eccentric cutout and corrugated (TD/TID) properties. Engineering with Computers (2020), pp 1–17.

  15. Dewangan H C, Katariya P V, and Panda S K, Materials Today: Proceedings 33 (2020) 4961.

    Google Scholar 

  16. Dewangan H C, and Panda S K, Journal of Pressure Vessel Technology 144 (2022) 061903

    Article  CAS  Google Scholar 

  17. Dewangan H C, and Panda S K, Journal of Engineering Mechanics 148 (2022) 04022042.

    Article  Google Scholar 

  18. Saleem M, Toubal L, Zitoune R, and Bougherara H, Composites Part A: Applied Science and Manufacturing. 1 (2013) 169.

    Article  Google Scholar 

  19. Qiu X, Li P, Niu Q, Chen A, Ouyang P, Li C, and Ko T J, The International Journal of Advanced Manufacturing Technology. 97 (2018) 857.

    Article  Google Scholar 

  20. Haeger A, Grudenik M, Hoffmann M J, and Knoblauch V, Composite Structures. 1 (2019) 238.

    Article  Google Scholar 

  21. Zhang D, Zheng X, and Wu T, Composite Structures. 15 (2019) 111474

    Article  Google Scholar 

  22. Zhang H, Zhu P, Liu Z, Qi S, and Zhu Y, Mechanics of Advanced Materials and Structures. 28 (2021) 2515.

    Article  CAS  Google Scholar 

  23. Belingardi G, Beyene A T, Koricho E G, and Martorana B, Composite Structures 120 (2015) 483.

    Article  Google Scholar 

  24. Eskandari S, Pires F A, Camanho P P, and Marques A T, Composite Structures 151 (2016) 114.

    Article  Google Scholar 

  25. Djabali A, Toubal L, Zitoune R, and Rechak S, Composite Structures 184 (2018) 178.

    Article  Google Scholar 

  26. Hu H T, Lin W P, and Tu F T, Composites Part B: Engineering 83 (2015) 153.

    Article  CAS  Google Scholar 

  27. Labeas G, Belesis S, and Stamatelos D, Composites Part B: Engineering 39 (2008) 304.

    Article  Google Scholar 

  28. Ridha M, Wang C H, Chen B Y, and Tay T E, Composites Part A: Applied Science and Manufacturing 58 (2014) 16.

    Article  CAS  Google Scholar 

  29. Green B G, Wisnom M R, and Hallett S R, Composites Part A: Applied Science and Manufacturing 38 (2007) 867.

    Article  Google Scholar 

  30. Chen B Y, Tay T E, Baiz P M, and Pinho S T, Composites Part A: Applied Science and Manufacturing 47 (2013) 52.

    Article  CAS  Google Scholar 

  31. Bao H, and Liu G, Composite Structures 150 (2016) 173.

    Article  Google Scholar 

  32. Flatscher T, Wolfahrt M, Pinter G, and Pettermann H E, Composites science and technology 72 (2012) 1090.

    Article  CAS  Google Scholar 

  33. Zhang L, Huang J, Hu Z, Li X, Ding T, Hou X, Chen Z, Ye Z, and Luo R, Electrochimica Acta (2022). https://doi.org/10.1016/j.electacta.2022.140553

    Article  Google Scholar 

  34. Zhang L, Hu Z, Huang J, Chen Z, Li X, Feng Z, Yang H, Huang S, and Luo R, Journal of Advanced Ceramics 11 (2022) 1294. https://doi.org/10.1007/s40145-022-0610-6

    Article  CAS  Google Scholar 

  35. Li C, Jiang T, Liu S, and Han Q, Aerospace Science and Technology 124 (2022) 107513. https://doi.org/10.1016/j.ast.2022.107513

    Article  Google Scholar 

  36. Hao R B, Lu Z Q, Ding H, and Chen L Q, Nonlinear Dynamics 108 (2022) 941. https://doi.org/10.1007/s11071-022-07243-7

    Article  Google Scholar 

  37. Li X, Yang X, Yi D, Liu B, Zhu J, Li J, Gao C, and Wang L, Intermetallics 138 (2021) 107309. https://doi.org/10.1016/j.intermet.2021.107309

    Article  CAS  Google Scholar 

  38. Wang Z, Qiang H, Wang J, and Duan L, Propellants, Explosives, Pyrotechnics (2022). https://doi.org/10.1002/prep.202200046

    Article  Google Scholar 

  39. Zhang Z, Yang F, Zhang H, Zhang T, Wang H, Xu Y, and Ma Q, Materials Characterization 171 (2021) 110732

    Article  CAS  Google Scholar 

  40. ASTM D, Standard test method for tensile properties of polymer matrix composite materials. ASTM International, West Conshohocken, PA, (2008).

  41. ASTM C365-00, Standard Test Method for Flatwise Compressive Properties of Sandwich Cores, ASTM International, West Conshohocken, PA, (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Rostamiyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emrahi, R., Rostamiyan, Y. Effect of Machining Damage on the Tensile, Flexural, and Compressive Characteristics of the Undrilled and Open-Hole Carbon Fiber-Reinforced Polymer Laminated Composites. Trans Indian Inst Met 76, 1415–1426 (2023). https://doi.org/10.1007/s12666-022-02850-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02850-9

Keywords

Navigation