Skip to main content

Advertisement

Log in

Facile Synthesis of CeO2 Nanosheets via a Parallel Flow Precipitation Route

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, CeO2 nanosheet was facile synthesized via a parallel flow precipitation route, using cerium chloride trihydrate and sodium carbonate as the cerium source, without using any surfactants and templates. The results show that the CeO2 nanosheets have a median particle size (D50) of 118 nm, a range (R) of 0.69, a surface area of 3.01 m2/g, a pore diameter of 27.96 nm, a pore volume of 0.02 cm3/g, and a loss on ignition (L.O.I.) of < 1%. Furthermore, the activation energy of CeO2 nanocrystal growth during the calcination process is about 30.5 kJ/mol, indicating that the controlling link of the crystallite growth is the interfacial chemical reaction. Ostwald ripening (OR) mechanism has a synergistic effect with Oriented attachment (OA) mechanism during the process of nucleation and growth of Ce2(CO3)3 crystal grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kang Y, Zhang Y H, Sun P P, Huang P B, Yu X, Shi Q, Tian B, Gao J, and Shi F N, Solid State Ionics 350 (2020) 115310

    Article  CAS  Google Scholar 

  2. Lan Y P, and Sohn H Y, Ceram Int 44 (2018) 3847.

    Article  CAS  Google Scholar 

  3. Zmorayova K, Vojtkova L, Hlasek T, Plechacek J, and Diko P, Supercond Sci Tech 33 (2020) 034005

    Article  CAS  Google Scholar 

  4. Vazque V E, Lopez Z L, and Martinez V H, J Appl Polym Sci 137 (2020) 48663.

    Article  Google Scholar 

  5. Mueen R, Morlando A, Qutaish H, Lerch M, Cheng Z, and Konstantinov K, J Mater Sci 55 (2020) 6834.

    Article  CAS  Google Scholar 

  6. Leach F C P, Davy M, and Terry B, Fuel 288 (2021) 119636

    Article  CAS  Google Scholar 

  7. Lebedeva M I, Arzhatkina L A, Dzidziguri E L, and Sidorova E N, Nanotechnol Russ 9 (2014) 73.

    Article  CAS  Google Scholar 

  8. Putla S, Amin M H, Reddy B M, Nafady A, AlFarhan K A, and Bhargava S K, ACS Appl Mater Inter 7 (2015) 16525.

    Article  CAS  Google Scholar 

  9. Zhang D, Pan C, Shi L, Huang L, Fang J, and Fu H, Micropor Mesopor Mat 117 (2009) 193.

    Article  CAS  Google Scholar 

  10. Lu F, Meng F, Wang L, Luo J, and Sang Y, Mater Lett 73 (2012) 154.

    Article  CAS  Google Scholar 

  11. Yu T, Lim B, and Xia Y, Angew Chem 122 (2010) 4586.

    Article  Google Scholar 

  12. Li C R, Sun Q T, Lu N P, Chen B Y, and Dong W J, J Cryst Growth 343 (2012) 95.

    Article  CAS  Google Scholar 

  13. Zhang J, Li X C, Chen P A, and Zhu B Q, Materials 11 (2018) 1632.

    Article  Google Scholar 

  14. Morlando A, Borrás M C, Rehman Y, Bakand S, Barker P, Sluyter R, and Konstantinov K, J Mater Chem B 8 (2020) 4016.

    Article  CAS  Google Scholar 

  15. Hassanzadeh T S A, Mazaheri M, Aminzare M, and Sadrnezhaad S K, J Alloy Compd 491 (2009) 499.

    Article  Google Scholar 

  16. Khan M, Khan W, Ahamed M, and Alhazaa A N, Sci Rep-UK 7 (2017) 1.

    Article  Google Scholar 

  17. Li Y X, Chen W F, Zhou X Z, Gu Z Y, and Chen C M, Mater Lett 59 (2005) 48.

    Article  CAS  Google Scholar 

  18. Li J Z, Zhong J B, Hu W, Lu Y, Zeng J, and Shen Y C, Mat Sci Semicon Proc 16 (2013) 143.

    Article  CAS  Google Scholar 

  19. Ren S, and Gou L, Adv Appl Ceram 120 (2021) 95.

    Article  CAS  Google Scholar 

  20. Li Y L, Lv P, Li S W, Li T T, Yin S H, Zhang L B, Xu Z Y, and Zhang G G, JOM 74 (2022) 909.

    Article  CAS  Google Scholar 

  21. Qin W B, Yuan Z Y, Gao H L, and Meng F L, Sensors 20 (2020) 3353.

    Article  CAS  Google Scholar 

  22. Guen M J L, Hill S, Smith D, Theobald B, Gaugler E, Barakat A, and Mayer L C, Front Chem 7 (2019) 735.

    Article  Google Scholar 

  23. Han X G, Li L, and Wang C, CrystEngComm 14 (2012) 1939.

    Article  CAS  Google Scholar 

  24. Hassanzadeh T S A, Mazaheri M, Aminzare M, and Sadrnezhaad S, J Alloy Compd 491 (2010) 499.

    Article  Google Scholar 

  25. Lv P, Zhang L J, Koppala S, Chen K H, and Yin S H, ACS Omega 5 (2020) 21338.

    Article  CAS  Google Scholar 

  26. Zhang J, Huang F, and Lin Z, Nanoscale 2 (2010) 18.

    Article  Google Scholar 

  27. Lai A, He Q, Rao M, Gao G H, and Xiao Y F, J Solid State Chem 290 (2020) 121593

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the following programs is gratefully acknowledged: National Natural Science Foundation of China (Grant No. 52264051) and Yunnan Ten Thousand Talents Plan Young & Elite Talents Project (Grant No. YNWR-QNBJ-2018-323).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaohua Yin or Libo Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, J., Yao, J., Li, T. et al. Facile Synthesis of CeO2 Nanosheets via a Parallel Flow Precipitation Route. Trans Indian Inst Met 76, 1495–1507 (2023). https://doi.org/10.1007/s12666-022-02849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02849-2

Keywords

Navigation