Skip to main content
Log in

Freeze-Casted Porous Lamellar-Structured Alumina Ceramics and Polymer-Infiltrated Composites: Synergistic Enhancement of Structural Properties

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Freeze-casting (FC) is an innovative technique for developing porous ceramics with distinctive pore structures. The homogeneous alumina slurry with increasing solid concentration (50, 60, 70, and 80 wt.%) in water prepared by ball milling has been frozen and subsequently sublimed to produce green bodies, which are further sintered to fabricate lamellar-structured porous ceramics. As the solid content increases from 50 to 80 wt.%, the slurry viscosity increases, while porosity decreases from 70 to 30%. Microstructural investigations of porous ceramics revealed alternating layers of open porosity and a dense lamellar structure. The pores formed during FC were infiltrated with Poly (methyl methacrylate) (PMMA) polymer and composites were characterised by density, compressive strength and hardness measurement. The findings demonstrate that FC composite structural characteristics may be specifically engineered, making them the perfect choice for applications that is needed for high porosity at low or medium load-bearing capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shao G, Hanaor DAH, Shen X, Gurlo A, Adv. Mater. 32 (2020). https://doi.org/10.1002/adma.201907176.

  2. Li W L, Lu K, and Walz J Y, Int. Mater. Rev. 57 (2012) 37. https://doi.org/10.1179/1743280411Y.0000000011

    Article  CAS  Google Scholar 

  3. Araki K, and Halloran J W, J. Am. Ceram. Soc. 87 (2004) 1859. https://doi.org/10.1111/j.1151-2916.2004.tb06331.x

    Article  CAS  Google Scholar 

  4. Aneziris C G, Schärfl W, and Ullrich B, J. Eur. Ceram. Soc. 27 (2007) 3191. https://doi.org/10.1016/j.jeurceramsoc.2007.01.006

    Article  CAS  Google Scholar 

  5. Porter M M, McKittrick J, and Meyers M A, Jom. 65 (2013) 720. https://doi.org/10.1007/s11837-013-0606-3

    Article  CAS  Google Scholar 

  6. Deville S, Materials (Basel). 3 (2010) 1913. https://doi.org/10.3390/ma3031913

    Article  CAS  Google Scholar 

  7. Deville S, Saiz E, Nalla R K, and Tomsia A P, Science. 311 (2006) 515. https://doi.org/10.1126/science.1120937

    Article  CAS  Google Scholar 

  8. Deville S, Adv. Eng. Mater. 10 (2008) 155. https://doi.org/10.1002/adem.200700270

    Article  CAS  Google Scholar 

  9. Deville S, Saiz E, and Tomsia A P, Biomaterials. 27 (2006) 5480. https://doi.org/10.1016/j.biomaterials.2006.06.028

    Article  CAS  Google Scholar 

  10. Zuo K H, Zeng Y P, and Lin Q L, Adv. Mater. Res. 518–523 (2012) 665. https://doi.org/10.4028/www.scientific.net/AMR.518-523.665

    Article  CAS  Google Scholar 

  11. Lebreton K, Rodríguez-Parra J M, Moreno R, and Nieto M I, Adv. Appl. Ceram. 114 (2015) 296. https://doi.org/10.1179/1743676115Y.0000000006

    Article  CAS  Google Scholar 

  12. Lasalle A, Guizard C, Leloup J, Deville S, Maire E, Bogner A, Gauthier C, Adrien J, and Courtois L, J. Am. Ceram. Soc. 95 (2012) 799. https://doi.org/10.1111/j.1551-2916.2011.04993.x

    Article  CAS  Google Scholar 

  13. Seuba J, Maire E, Adrien J, Meille S, and Deville S, Open Ceramics 8 (2021) 100195. https://doi.org/10.1016/j.oceram.2021.100195

    Article  CAS  Google Scholar 

  14. Schoof H, Apel J, Heschel I, and Rau G, J. Biomed. Mater. Res. 58 (2001) 352. https://doi.org/10.1002/jbm.1028

    Article  CAS  Google Scholar 

  15. Barr S A, and Luijten E, Acta Mater. 58 (2010) 709. https://doi.org/10.1016/j.actamat.2009.09.050

    Article  CAS  Google Scholar 

  16. Li D, and Li M, J. Porous Mater. 19 (2012) 345. https://doi.org/10.1007/s10934-011-9480-y

    Article  CAS  Google Scholar 

  17. Zeng J, Zhang Y, Zhou K C, and Zhang D, Trans. Nonferrous Met. Soc. China (English Ed.) 24 (2014) 718. https://doi.org/10.1016/S1003-6326(14)63116-2

    Article  CAS  Google Scholar 

  18. Kim K H, Kim D H, Ryu S C, Yoon S Y, and Park H C, J. Compos. Mater. 54 (2020) 1527. https://doi.org/10.1177/0021998316636460

    Article  CAS  Google Scholar 

  19. Porter M M, Yeh M, Strawson J, Goehring T, Lujan S, Siripasopsotorn P, Meyers M A, and McKittrick J, Mater. Sci. Eng. A. 556 (2012) 741. https://doi.org/10.1016/j.msea.2012.07.058

    Article  CAS  Google Scholar 

  20. Preiss A, Su B, Collins S, and Simpson D, J. Eur. Ceram. Soc. 32 (2012) 1575. https://doi.org/10.1016/j.jeurceramsoc.2011.12.031

    Article  CAS  Google Scholar 

  21. Liu G, and Button T W, Ceram. Int. 39 (2013) 8507. https://doi.org/10.1016/j.ceramint.2013.02.101

    Article  CAS  Google Scholar 

  22. Tang Y, Miao Q, Qiu S, Zhao K, and Hu L, J. Eur. Ceram. Soc. 34 (2014) 4077. https://doi.org/10.1016/j.jeurceramsoc.2014.05.040

    Article  CAS  Google Scholar 

  23. Nakazawa H, Yamada H, Fujita T, Ito Y, Clay Sci. 6 (1987) 269. https://doi.org/10.11362/jcssjclayscience1960.6.269

  24. Hunger P M, Donius A E, and Wegst U G K, Acta Biomater. 9 (2013) 6338. https://doi.org/10.1016/j.actbio.2013.01.012

    Article  CAS  Google Scholar 

  25. Hunger P M, Donius A E, and Wegst U G K, J. Mech. Behav. Biomed. Mater. 19 (2013) 87. https://doi.org/10.1016/j.jmbbm.2012.10.013

    Article  CAS  Google Scholar 

  26. Munch E, Saiz E, Tomsia A P, and Deville S, J. Am. Ceram. Soc. 92 (2009) 1534. https://doi.org/10.1111/j.1551-2916.2009.03087.x

    Article  CAS  Google Scholar 

  27. Shen P, Xi J, Fu Y, Shaga A, Sun C, and Jiang Q, Acta Metall. Sin. (English Lett.) 27 (2014) 944. https://doi.org/10.1007/s40195-014-0157-9

    Article  CAS  Google Scholar 

  28. Hu L, Zhang Y, Dong S, Zhang S, and Li B, Ceram. Int. 39 (2013) 6287. https://doi.org/10.1016/j.ceramint.2013.01.050

    Article  CAS  Google Scholar 

  29. Geng S L, Shen P, Hu Z J, Guo R F, and Jiang Q C, J. Eur. Ceram. Soc. 38 (2018) 2605. https://doi.org/10.1016/j.jeurceramsoc.2018.01.039

    Article  CAS  Google Scholar 

  30. Jing L, Zuo K, Fuqiang Z, Chun X, Yuanfei F, Jiang D, and Zeng Y P, Ceram. Int. 36 (2010) 2499. https://doi.org/10.1016/j.ceramint.2010.07.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their heartfelt appreciation to The Director, ARDE, Pune, and Vice-Chancellor, DIAT, Pune, for their assistance with this project. In addition, the DRDO's financial assistance as an SRF fellowship is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Praveen Kumar.

Ethics declarations

Conflict of Interest

The authors report there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, P., Rawal, B., Panda, H.S. et al. Freeze-Casted Porous Lamellar-Structured Alumina Ceramics and Polymer-Infiltrated Composites: Synergistic Enhancement of Structural Properties. Trans Indian Inst Met 76, 1211–1219 (2023). https://doi.org/10.1007/s12666-022-02831-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02831-y

Keywords

Navigation