Skip to main content
Log in

High-Temperature Rheological Behavior and Composition Design of Hf-Be-Ti-Zr-Cu-Ni High-Entropy Amorphous Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The glass forming ability, thermal stability and high-temperature rheological behavior of the Hf-Be-Ti-Zr-Cu-Ni high-entropy alloy were studied. The results show that the appropriate Cu/Ni ratio significantly increases the glass forming ability and thermal stability of Hf based high-entropy alloy. When the Cu/Ni ratio is 0.21, the critical size increases from 10 to 18 mm, the supercooled liquid region is 61.15 K. The high-temperature rheological behavior of Hf30Be18Ti16Zr16Cu3.5Ni16.5 amorphous alloy is highly sensitive to strain rate and temperature. And with the decrease of strain rate, the structure of Hf-Be-Ti-Zr-Cu-Ni amorphous alloy changes more obviously at higher temperature, the thermal processing diagram is established, and the results show that the Hf30Be18Ti16Zr16Cu3.5Ni16.5 has good thermoplastic formability at 663–693 K, the strain rate: 5 × 10–4 s−1–1 × 10–3 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang W H, Dong C, and Shek C H, Mater Sci Eng R 44 (2004) 45.

    Article  Google Scholar 

  2. Schroers A U J, and Schroers A F J, Physics Today 66 (2013) 32.

    Article  CAS  Google Scholar 

  3. Inoue A, Acta Mater 48 (2000) 279.

    Article  CAS  Google Scholar 

  4. Chen Y G, Tao P J, Zhang W J, Zhang C H, and Zhu K S, Coatings 11 (2021) 103.

    Article  CAS  Google Scholar 

  5. Shi H Q, Zhao W B, Wei X W, Ding Y, Shen X D, and Liu W J, J Alloys Compd 815 (2020) 152636.

    Article  CAS  Google Scholar 

  6. Cao G H, Liu K, Liu G P, Zong H T, Bala H, and Zhang B Q, J Non-Crystal Solids 513 (2019) 105.

    Article  CAS  Google Scholar 

  7. Wu J L, Pan Y, Li X Z, and Wang X F, Mater Sci Eng A. 608 (2014) 16.

    Article  CAS  Google Scholar 

  8. Frey M, Busch R, Possart W, and Gallino I, Acta Mater 155 (2018) 117.

    Article  CAS  Google Scholar 

  9. Mastropietro D G, and Moya J A, Comput Mater Sci 188 (2021) 110230.

    Article  CAS  Google Scholar 

  10. Yan H-M, Liu Y, Pang S-J, and Zhang T, Rare Metals 37 (2018) 831.

    Article  CAS  Google Scholar 

  11. Khond A, Chattopadhyay C, Majumdar B, Bhatt J, and Srivastav A K, Metall Mater Trans A 52 (2021) 1169.

    Article  CAS  Google Scholar 

  12. Jin Z S, Yang Y J, Zhang Z P, Ma X Z, Lv J W, Wang F L, Ma M Z, Zhang X Y, and Liu R P, J Alloys Compd 806 (2019) 668.

    Article  CAS  Google Scholar 

  13. Jia M, Gao Y, Zhou P, Zhang J, Li C, Liu Y, and Hu X, J Ordnance Equip Eng 43 (2022) 10.

    Google Scholar 

  14. Wang W H, JOM. 66 (2014) 2067.

    Article  CAS  Google Scholar 

  15. Ding H Y, Shao Y, Gong P, Li J F, and Yao K F, Mater Lett 125 (2014) 151.

    Article  CAS  Google Scholar 

  16. Wang Y S, Linghu R K, Liu Y Y, Hu J X, Xu J, Qiao J W, and Wang X M, J Alloys Compd 751 (2018) 391.

    Article  CAS  Google Scholar 

  17. Weihua W, Progress Mater Sci 57 (2012) 487.

    Article  Google Scholar 

  18. Hufnagel T C, Schuh C A, and Falk M L, Acta Mater 109 (2016) 375.

    Article  CAS  Google Scholar 

  19. Lee K S, Kim S, Lim K R, Hong S H, Kim K B, and Na Y S, J Alloys Compd 663 (2016) 270.

    Article  CAS  Google Scholar 

  20. Song S M, Liao Y C, Li T H, Lee C K, Tsai P H, Jang J S C, and Huang J C, J Mater Res Technol 8 (2019) 1907.

    Article  CAS  Google Scholar 

  21. Yao D, Deng L, Zhang M, Gong P, and Wang X, Intermet 84 (2017) 1.

    Article  CAS  Google Scholar 

  22. Li B, Xu X, Zhang H, Yang K, Fan X, and Li J, J Rare Earths 37 (2019) 95.

    Article  CAS  Google Scholar 

  23. Li J, Li C, Wang S, Wang H, and Kou S, J Non-Crystal Solids 570 (2021) 121008.

    Article  CAS  Google Scholar 

  24. Takeuchi A, and Inoue A, Mater. Trans. 46 (2005) 2817.

    Article  CAS  Google Scholar 

  25. Lu Z P, Liu C T, and Dong Y D, J Non-Crystal Solids 341 (2004) 93.

    Article  CAS  Google Scholar 

  26. Park J M, Na J H, Kim D H, Kim K B, Mattern N, Kühn U, and Eckert J, Philos Mag 90 (2010) 2619.

    Article  CAS  Google Scholar 

  27. Mattern N, J Non-Crystal Solids 353 (2007) 1723.

    Article  CAS  Google Scholar 

  28. Narayana Murty S V S, and Nageswara Rao B, Materials Science & Engineering A 254 (1998) 76.

Download references

Acknowledgements

The authors wish to acknowledge the financial support from the China Postdoctoral Science Foundation (2021M702982) and Major special project of scientific and technological innovation 2025 in Ningbo (2019B10086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, B., Huang, W. et al. High-Temperature Rheological Behavior and Composition Design of Hf-Be-Ti-Zr-Cu-Ni High-Entropy Amorphous Alloy. Trans Indian Inst Met 76, 1165–1174 (2023). https://doi.org/10.1007/s12666-022-02827-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02827-8

Keywords

Navigation