Skip to main content

Advertisement

Log in

Nonlinear Deformation of Fe, FeSi and FeCrSi with BCC Structure Under Pressure

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The model and the theory of nonlinear deformation for BCC substitutional and interstitial ternary alloy are built on the basis of the statistical moment method. Numerical calculations are performed for Fe, FeSi and FeCrSi in the range of temperature from 0 to 500 K, in the range of pressure from 0 to 9.8 GPa, in the range of interstitial atom concentration from 0 to 5% and in the range of substitutional atom concentration from 0 to 10%. The maximum real stress and the elastic deformation limit both decrease with increasing the interstitial atom concentration, increase with increasing the substitutional atom concentration and increase with increasing the temperature. The maximum real stress increases and the elastic deformation limit decreases when the pressure increases. Some calculated results on nonlinear deformation of Fe obtained by SMM have been compared with the experimental data and have some very good concordance. Many calculated numerical results on nonlinear deformation of FeSi and FeCrSi are new and predictive, experimentally oriented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shibazaki Y, Nishida K, Higo Y, Igarashi M, Tahara M, Sakamaki T, Terasaki H, Shimoyama Y, Kuwabara S, Takubo Y, and Ohtani E, American Mineralogist 101 (2016) 1150.

    Article  Google Scholar 

  2. Brosh E, Markov G, and Shneck R Z, Calphad 31 (2007) 173. https://doi.org/10.1016/j.calphad.2006.12.008

    Article  CAS  Google Scholar 

  3. Maeda Y, Thin Solid Films 515 (2007) 8118. https://doi.org/10.1016/j.tsf.2007.02.073

    Article  CAS  Google Scholar 

  4. Georg R B, Halliday A N, Schauble E A, and Reynolds B C, Nature 447 (2007) 1102. https://doi.org/10.1038/nature05927

    Article  CAS  Google Scholar 

  5. IchiTani J, Takahashi M, and Kido H, Physica B. Condensed Matter 405 (2010) 2200. https://doi.org/10.1016/j.physb.2010.02.008

    Article  CAS  Google Scholar 

  6. Whitaker M I, Wei I, Qiong I, Liping W, and Baosheng I, American Mineralogy 94 (2009) 1039.

    Article  CAS  Google Scholar 

  7. Whitaker M I, Liu W, Liu Q, Wang I, and Li B, High Pressure Research 28 (2008) 385.

    Article  CAS  Google Scholar 

  8. Petrova A E, Krasnorussky V N, and Stishov S M, Journal of Experimental and Theoretical Physics 111 (2010) 427. https://doi.org/10.1134/S1063776110090128

    Article  CAS  Google Scholar 

  9. Guan J, Chen X, Zhang L, Wang J, and Liang C, Physica Status Solidi A 213 (2016) 1585. https://doi.org/10.1002/pssa.201533030

    Article  CAS  Google Scholar 

  10. Zhang H, Punkkinen Marko P J, Johansson B, and Vitos L, Journal of Physics: Condensed Matter 22 (2010) 275402. https://doi.org/10.1088/0953-8984/22/27/275402

    Article  CAS  Google Scholar 

  11. Isaak D G, and Masuda K, Journal of Geophysical Research: Solid Earth 100 (1995) 17689.

    Article  CAS  Google Scholar 

  12. Psiachos D, Hammerschmidt T, and Drautz R, Acta Materialia 59 (2011) 4255. https://doi.org/10.1016/j.actamat.2011.03.041

    Article  CAS  Google Scholar 

  13. Sha X, and Cohen R E, Physical Review B 74 (2006) 214111. https://doi.org/10.1103/PhysRevB.74.214111

    Article  CAS  Google Scholar 

  14. Liu J, Lin J F, Alatas A, and Bi W, Physics of the Earth and Planetary Interiors 233 (2014) 24. https://doi.org/10.1016/j.pepi.2014.05.008

    Article  CAS  Google Scholar 

  15. Antonangeli D, and Ohtani E, Progress in Earth and Planetary Science 2 (2015) 3. https://doi.org/10.1186/s40645-015-0034-9

    Article  Google Scholar 

  16. Decremps F, Antonangeli D, Gauthier M, Ayrinhac S, Morard M, Le Marchand G, Bergame F, and Philippe J, Geophysical Research Letters 41 (2014) 1459. https://doi.org/10.1002/2013GL058859

    Article  CAS  Google Scholar 

  17. Adams J J, Agosta D S, Leisure R G, and Ledbetter H, Journal of Applied Physics 100 (2006) 113530. https://doi.org/10.1063/1.2365714

    Article  CAS  Google Scholar 

  18. Smith A D, Donoghue J M, Garner A J W, et al., Scientific Reports 10 (2020) 5353.

    Article  CAS  Google Scholar 

  19. Singh A K, Mao H K, Shu J, and Hemley R J, Physical Review Letters 80 (1998) 2157. https://doi.org/10.1103/PhysRevLett.80.2157

    Article  CAS  Google Scholar 

  20. Tang N, and Hung V V, Physica Status Solidi (b) 149 (1988) 511. https://doi.org/10.1002/pssb.2221490212

    Article  Google Scholar 

  21. Tang N, and Hung V V, Physica Status Solidi (b) 162 (1990) 371. https://doi.org/10.1002/pssb.2221620206

    Article  Google Scholar 

  22. Hung V V, Statistical moment method in studying elastic and thermodynamic properties of crystals, HNUE Publishing House (2009).

    Google Scholar 

  23. Tuyen L T C, Hoc N Q, Tinh B D, Cuong T D, and Vinh D Q, Chinese Journal of Physics 59 (2019) 1. https://doi.org/10.1016/j.cjph.2019.02.018

    Article  CAS  Google Scholar 

  24. Tuyen L T C, Hoc N Q, Tinh B D, Hanh P T M, Cuong T D, and Viet L H, Modern Physical Letter B 33 (2019) 1950165. https://doi.org/10.1142/S0217984919501653

    Article  CAS  Google Scholar 

  25. Hoc N Q, Tinh B D, Coman G, and Hien N D, Journal of the Physical Society of Japan 89 (2020) 114602. https://doi.org/10.7566/JPSJ.89.114602

    Article  Google Scholar 

  26. Hoc N.Q., Cuong T.D. and Hien N.D. (2019), Study on elastic deformation of interstitial alloy FeC with BCC structure under pressure, Proc. the ACCMS-Theme Meeting on “Multiscale Modelling of Materials for Sustainable Development”,7th – 9th September, 2018, VNU, Hanoi, Vietnam, VNU Journal of Sciences: Mathematics-Physics, 35(1),1–12. DOI: https://doi.org/10.25073/2588-1124/vnumap.4293

  27. Hoc N.Q., Hoa N.T., Cuong T.D. and Thang D.Q. (2019), On the melting of interstitial alloys FeH, FeSi and FeC with a body-centered cubic structure under pressure, Proc. the ACCMS-Theme Meeting on “Multiscale Modelling of Materials for Sustainable Development”,7th – 9th September, 2018, VNU, Hanoi, Vietnam Vietnam Journal of Science, Technology and Engineering, 61(2),17–22, DOI.https://doi.org/10.31276/VJSTE.61(2).17-22

  28. Hoc N Q, Hien N D, Hoa N M, and Trung V Q, HNUE Journal of Science, Natural Sciences 65 (2020) 61. https://doi.org/10.18173/2354-1059.2020-0030

    Article  Google Scholar 

  29. Hoc N Q, Hien N D, Hoa N T, Uyen P P, and Ngoc T H, HNUE Journal of Science, Natural Sciences 67 (2022) 38. https://doi.org/10.18173/2354-1059.2022-0005

    Article  Google Scholar 

  30. Magomedov M N, Zhurnal Fizicheskoi Khimii 61 (1987) 1003. ((in Russian)).

    CAS  Google Scholar 

  31. Hung V V, and Hoa N T, Communications in Physics 16 (2006) 18. https://doi.org/10.15625/0868-3166-16-1

    Article  CAS  Google Scholar 

  32. Hung V V, and Hoa N T, Communications in Physics 16 (2006) 121. https://doi.org/10.15625/0868-3166-16-2

    Article  CAS  Google Scholar 

  33. Reed R P, Clark AF (1983), American Society for Metals, 590

  34. Hoc N Q, Hien N D, and Vi T K, Physica B (2022). https://doi.org/10.1016/j.physb.2022.414134(inpress)as

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoc Quang Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 190 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.Q., Nguyen, H.D. Nonlinear Deformation of Fe, FeSi and FeCrSi with BCC Structure Under Pressure. Trans Indian Inst Met 76, 1199–1209 (2023). https://doi.org/10.1007/s12666-022-02820-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02820-1

Keywords

Navigation