Skip to main content
Log in

First-Principles Investigation on the High-Temperature Mechanical Properties and Thermal Properties of Pt-40Rh

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The Pt–Rh alloy is currently the most promising material for aerospace engine thruster nozzles. The performance of the alloy is closely related to the Rh content. Pt-40Rh is the most important variant of the Pt–Rh alloy system. In this paper, the crystal structure, equation of state (EOS), elastic properties and thermal properties of the Pt-40Rh alloy were studied using first-principle calculations based on density, functional theory and the quasi-harmonic Debye model. The results showed that the crystalloid volume of Pt-40Rh was strongly influenced by the pressure and temperature. The higher the temperature and reduced pressure, the greater the change in volume. Under zero temperature and zero pressure, the Poisson's ratio and BH/GH of the Pt-40Rh crystal were 0.335 and 2.433, respectively. Meanwhile, the thermal property calculations also revealed that the constant pressure heat capacity (CP) continued to increase with temperature. The constant body heat capacity (CV) gradually tended to the Dulong-Petit limit value (99.768 J·mol−1·K−1) when the temperature was above 600 K, that is while CP continued to increase with the increase in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.Q. Zhang, Acta. Metall. Sin. 18 (2009) 443 doi: https://doi.org/10.1007/s40195-020-01092-2

    Article  CAS  Google Scholar 

  2. J. C. Williams and E. A. Starke, Acta. Mater. 51(2013) 5775 doi: https://doi.org/10.1016/j.actamat.2003.08.023

    Article  CAS  Google Scholar 

  3. J. A. Dever, M. V. Nathal and J. A. DiCarlo, J. Aerospace. Eng. 26(2013) 500 doi: https://doi.org/10.1061/(ASCE) AS.1943-5525.0000321

    Article  Google Scholar 

  4. B. N. Bhat, Aerospace materials and Applications (American Institute of Aeronautics and Astronautics, Inc., 2018)

  5. S. D. Antolovich, E. P. Busso, P. Skelton, J. Telesman, Mater. High. Temp. 33(2016) 289 doi: https://doi.org/10.1080/09603409.2016.1206294

  6. A. Tiwary, R. Kumar and J. S. Chohan, Mater. Today. 51(2022) 865 doi: https://doi.org/10.1016/j.matpr.2021.06.276

    Article  CAS  Google Scholar 

  7. L. A. Cornish, B. Fischer and R. Völkl, MRS. Bull 28(2003) 632 doi: https://doi.org/10.1557/mrs2003.190

    Article  CAS  Google Scholar 

  8. L. A. Cornish, R. Süss and A. Douglas, Met. Rev. 53(2009) 2 doi: https://doi.org/10.1595/147106709X393299

    Article  CAS  Google Scholar 

  9. L. A. Cornish, R. Süss and L. H. Chown, Met. Rev. 53(2009)155 doi: https://doi.org/10.1595/147106709X464371

    Article  CAS  Google Scholar 

  10. J. H. Potgieter, N. B. Maledi and M. Sephton, Met. Rev. 54(2010) 112 doi:https://doi.org/10.1595/147106710X497904

    Article  CAS  Google Scholar 

  11. X. Zhang, Y. Chen and J. Hu, Prog. Aerosp. Sci. 97(2018) 22 doi: https://doi.org/10.1016/j.paerosci.2018.01.001

    Article  Google Scholar 

  12. C.Y. Hu, Y. Wei, H. Cai, L. Chen, X. Wang, X. Zhang, G. Zhang, X. Wang, Johnson. Matthey. Tech. 65(2021) 535 doi: https://doi.org/10.1595/205651321X16221908118376

  13. Y. X. Zhou, X. Chong, M. Hu, Y. Wei, C. Hu, A. Zhang, and J. Feng, Phys. Lett. A 405 (2021) 127424 doi: https://doi.org/10.1016/j.physleta.2021.127424

  14. V. S. Prasad, R. G. Baligidad and A. A. Gokhale, Aerospace Materials and Material Technologies 2017 267 doi: https://doi.org/10.1007/978-981-10-2134-3_12

  15. P. J. Hill, N. Adams, T. Biggs, P. Ellis, J. Hohls, S. S. Taylor, I. M. Wolff,Mater. Sci. Eng. A 329 (2002) 295 doi: https://doi.org/10.1016/S0921-5093(01)01577-5

  16. B. A. Douglas, P. J. Hill and T. Murakumo, Met. Rev. 53(2009) 69 doi: https://doi.org/10.1595/147106709X434040

    Article  CAS  Google Scholar 

  17. Z. M. Rdzawski and J. P. Stobrawa, Mater. Process. Technol. 153(2004) 681 doi: https://doi.org/10.1016/j.jmatprotec.2004.04.130

    Article  CAS  Google Scholar 

  18. Y. Ning, Z. Yang and F. Wen, Platinum (Metallurgical Industry Press, Beijing, 2010)

    Google Scholar 

  19. S. Chen, J. Lu and M. Xie, Rare. Metals. 39(2015) 276 doi: https://doi.org/10.13373/j.cnki.cjrm.2015.03.012

    Article  CAS  Google Scholar 

  20. G. B. Fairbank, Development of platinum alloys for high-temperature service (Doctoral dissertation, University of Cambridge, 2003)

  21. M. Tian, C. Hu, H. Cai, X. Li, Y. Wei, L. He, Mater. Sci. Eng. A 2020 797 doi: https://doi.org/10.1016/j.msea.2020.139966

  22. D. R. Hamann, M. Schlüter and C. Chiang, Phys. Rev. Lett. 43(1979) 1494. doi: https://doi.org/10.1103/PhysRevLett.43.1494

    Article  CAS  Google Scholar 

  23. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys. Condens. Matter. 14(2002) 2717 doi: https://doi.org/10.1088/0953-8984/14/11/301

  24. A. Kundu, N. Mingo and D. Broido, Phys. Rev. B 84(2011) 125426. doi: https://doi.org/10.1103/PhysRevB.84.125426

    Article  CAS  Google Scholar 

  25. B. Hammer, L. B. Hansen and J. K. Nørskov, Phys. Rev. B 59(1999)7413 doi: https://doi.org/10.1103/PhysRevB.59.7413

    Article  Google Scholar 

  26. J. P. Perdew and Y. Wang, Phys. Rev. B 45 (1992) 13244. doi: https://doi.org/10.1103/PhysRevB.45.13244

    Article  CAS  Google Scholar 

  27. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13(1976) 5188 doi: https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  28. Z. T. Yuan, Y. Jiang, L. Li, J. Feng,Sci Adv Mater. 10 (1976) 1475 doi: https://doi.org/10.1166/sam.2018.3333

  29. X. Wang, J. Rong, Y. Song, X. Yu, Z. Zhan, J. Deng, Phys. Lett. A 381(2017) 2845 doi: https://doi.org/10.1016/j.physleta.2017.06.035

  30. R. Hill, Section A 65(1952) 349 doi: https://doi.org/10.1088/0370-1298/65/5/307

    Article  Google Scholar 

  31. M. A. Blanco, E. Francisco and V. Luana, Comput Phys Commun 158 (2004) 57 doi: https://doi.org/10.1016/j.comphy.2003.12.001

    Article  CAS  Google Scholar 

  32. T. Yang, A. Rakita, N. Nikolić, M. Mildner, J. Matiasek, A. Elbe-Bürger, Sci. Rep. 10(2020)1 doi: https://doi.org/10.1038/s41598-020-59687-9

  33. A. Kundu,N. Mingo, D. A. Broido, D. A. Stewart, Phys. Rev. B 84(2011) 125426 doi:https://doi.org/10.1103/PhysRevB.84.125426

  34. F. Birch, Phys. Rev. E. 71(1947) 809 doi: https://doi.org/10.1038/s41598-020-59687-9

    Article  CAS  Google Scholar 

  35. K. Latimer, S. Dwaraknath, K. Mathew, D. Winston, K. A. Persson, NPJComput.Mater. 4(2018) 1 doi:https://doi.org/10.1038/s41524-018-0091-x

  36. J. Qin, X. Zhang, Y. Xue, X. Li, M. Ma, R. Liu, Comput. Mater. Sci. 79(2013) 456 doi: https://doi.org/10.1016/j.commatsci.2013.06.003

  37. G. V. Sin’Ko and N. A. Smirnov, J. Phys-Condens. Mat. 14(2002) 6989 doi: https://doi.org/10.1088/0953-8984/14/29/301

  38. S. L. Shang, G. Sheng, Y. Wang, L. Q. Chen, Z. K. Liu, Phys. Rev. B 80(2009) 052102 doi.org/https://doi.org/10.1103/PhysRevB.80.052102

Download references

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China (Grant No. 52161005), The Major Science and Technology Program of Yunnan, China (2019ZE001 and 202002AB080001-1) and Natural Science Foundation of Yunnan, China (Grant Nos. 2019FA048 and 2019FI020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhentao Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Zhang, M., Hu, C. et al. First-Principles Investigation on the High-Temperature Mechanical Properties and Thermal Properties of Pt-40Rh. Trans Indian Inst Met 76, 1545–1552 (2023). https://doi.org/10.1007/s12666-022-02802-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02802-3

Keywords

Navigation