Skip to main content
Log in

Effect of Oscillating Patterns on the Weld Formation, Microstructure, and Tensile Properties of 1.7-mm Recrystallized Niobium Sheets

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The beam oscillation was considered to improve the weld formation, microstructure, and mechanical properties of the equator welds in the superconducting radiofrequency cavities. In this study, electron beam welding (EBW) of the 1.7-mm recrystallized niobium sheets was done with various beam oscillation patterns (sinusoidal, circular, and infinity). The results show that the weld formation is optimum when welding with circular oscillation. The grains in the fusion zone and heat-affected zone are not significantly refined through beam oscillation. Texture in the weld and bottom surface shows an anisotropy of the weld with circular or infinity oscillation and a possibility of electron emission of the weld with sinusoidal or circular oscillation. Moreover, the joint with circular oscillation has the optimum tensile strength when tensile tested at 77 K, and the plasticity is the poorest for the joint with infinity oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Singer W, Supercond Sci Tech. 30 (2017) 033001. https://doi.org/10.1088/1361-6668/30/3/033001

    Article  CAS  Google Scholar 

  2. Kneisel P, Ciovati G, Dhakal P, Saito K, and Myneni G R, Nucl Instrum Meth A. 774 (2015) 133–150. https://doi.org/10.1016/j.nima.2014.11.083

    Article  CAS  Google Scholar 

  3. Anakhov S, Singer X, Singer W, and Wen H, AIP. Conf. Proc. 837 (2006) 71–84. https://doi.org/10.1063/1.2213061

    Article  CAS  Google Scholar 

  4. Cooley L D, Burk D, Cooper C, Dhanaraj N, and Wu G, IEEE Trans Appl Supercond. 21 (2011) 2609–2614. https://doi.org/10.1109/TASC.2010.2083629

    Article  CAS  Google Scholar 

  5. Pekeler M, Part Accel. 60 (1998) 231–242.

    CAS  Google Scholar 

  6. Furuta F, Saito K, and Konomi T, AIP Conf Proc. 1352 (2011) 169–177. https://doi.org/10.1063/1.3579235

    Article  CAS  Google Scholar 

  7. Shimizu H, Dohmae T, Egi M, Enami K, and Yamanaka M, IEEE Trans Appl Supercond. 27 (2017) 3500714. https://doi.org/10.1109/TASC.2017.2739643

    Article  Google Scholar 

  8. Zhang H, Li Z, Qu H, and Zhang S, China Mech Eng. 26 (2015) 2314–2317. https://doi.org/10.3969/j.issn.1004132X.2015.17.007

    Article  CAS  Google Scholar 

  9. Fang Y, Yang Z, Ding R, Dong S, and He J, Transact China Weld institut. 41 (2020) 68–74. https://doi.org/10.12073/j.hjxb.20191122002

    Article  Google Scholar 

  10. Yang Z, Fang Y, and He J, Rare Metal Mat Eng. 50 (2021) 881–886.

    CAS  Google Scholar 

  11. Das K, Ghosh A, Bhattacharya A, Lanjewar H, and Ghosh M, Mater. Charact. 179 (2021) 111318. https://doi.org/10.1016/j.matchar.2021.111318

    Article  CAS  Google Scholar 

  12. Babu N K, Raman S G S, Murthy C V S, and Reddy G M, Sci Technol Weld Joi. 10 (2005) 583–590. https://doi.org/10.1179/174329305X57473

    Article  CAS  Google Scholar 

  13. Babu N K, Raman S G S, Murthy C V S, and Reddy G M, Mat. Sci. Eng. A-Struct. 471 (2007) 113–119. https://doi.org/10.1016/j.msea.2007.03.040

    Article  CAS  Google Scholar 

  14. Kar J, Roy S K, and Roy G G, Int J Adv Manuf Technol. 94 (2018) 4531–4541. https://doi.org/10.1007/s00170-017-1169-1

    Article  Google Scholar 

  15. Fu P, Mao Z, Zuo C, Wang Y, and Wang C, Chinese J Aeronaut. 27 (2014) 1015–1021. https://doi.org/10.1016/j.cja.2014.03.020

    Article  Google Scholar 

  16. Wang S, and Wu X, Mater. Des. 36 (2012) 663–670. https://doi.org/10.1016/j.matdes.2011.11.068

    Article  CAS  Google Scholar 

  17. Jiang Z, Chen X, Li H, Lei Z, and Wang Y, Mater Des. 186 (2020) 108195. https://doi.org/10.1016/j.matdes.2019.108195

    Article  CAS  Google Scholar 

  18. Zhang C, Li X, and Gao M, J Mater Res Technol. 9 (2020) 9271–9282. https://doi.org/10.1016/j.jmrt.2020.06.030

    Article  Google Scholar 

  19. Tao J, Wu J, Liu Z, Ma J, and Peng W, Materials. 15 (2022) 3778. https://doi.org/10.3390/ma15113778

    Article  CAS  Google Scholar 

  20. Baars D, Bieler T R, Hartwig K T, Jiang H, and Grimm T L, JOM. 59 (2007) 50–55. https://doi.org/10.1007/s11837-007-0079-3

    Article  CAS  Google Scholar 

  21. Singer W, Singer X, Tiessen J, Wen H M, and Scholz F, AIP Conf Proc. 671 (2003) 162–175. https://doi.org/10.1063/1.1597366

    Article  CAS  Google Scholar 

  22. Saha T K, Mondal J, Mittal K C, Bhushan K G, and Bapat A V, J Phys Conf Ser. 390 (2012) 012015. https://doi.org/10.1088/1742-6596/390/1/012015

    Article  CAS  Google Scholar 

  23. Dohmae T, Umemori K, Yamanaka M, Watanabe Y, and Inoue H, Nucl Instrum Meth A. 875 (2017) 1–9. https://doi.org/10.1016/j.nima.2017.08.050

    Article  CAS  Google Scholar 

  24. Jiang H, Bieler T R, Compton C, Grimm T L. IPAC2003 pp 1359–1361. https://doi.org/10.1109/PAC.2003.1289705

  25. Ke W, Bu X, Oliveira J P, Xu W, and Zeng Z, Opt. Laser. Technol. 133 (2021) 106540. https://doi.org/10.1016/j.optlastec.2020.106540

    Article  CAS  Google Scholar 

  26. Zhang D, Li C, Liu X, Cao Y, and Wu D, J Manuf Process. 31 (2018) 72–79. https://doi.org/10.1016/j.jmapro.2017.11.006

    Article  Google Scholar 

  27. Liu T, Mu Z, Hu R, and Pang S, Int J Heat Mass Tran. 140 (2019) 346–358. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.111

    Article  CAS  Google Scholar 

  28. Saadati M, Nobarzad A K E, and Jahazi M, J Manuf Process. 41 (2019) 242–251. https://doi.org/10.1016/j.jmapro.2019.03.032

    Article  Google Scholar 

  29. Gao M, Wang H K, Hao K D, Mu H Y, and Zeng X Y, J Manuf Process. 45 (2019) 92–99. https://doi.org/10.1016/j.jmapro.2019.07.001

    Article  Google Scholar 

  30. Wang H H, Meng L, Luo Q, Sun C, and Wan X L, Mat Sci Eng A Struct. 788 (2020) 139573. https://doi.org/10.1016/j.msea.2020.139573

    Article  CAS  Google Scholar 

  31. Liao J, Rare Metals Lett. 4 (2006) 41–42.

    Google Scholar 

  32. Fu C, Wang Y Q, He S L, Zhang C L, and Jing X, Mat Sci Eng A Struct. 821 (2021) 141604. https://doi.org/10.1016/j.msea.2021.141604

    Article  CAS  Google Scholar 

  33. Haynes W M, CRC handbook of chemistry and physics, 96th edn., CRC Press, Boca Raton (2016), pp 12–124.

    Book  Google Scholar 

  34. Wang L, Gao M, Zhang C, and Zeng X, Mater Des. 108 (2016) 707–717. https://doi.org/10.1016/j.matdes.2016.07.053

    Article  CAS  Google Scholar 

  35. Wu G, Dhanaraj N, Cooley L, Hicks D, and Compton C, AIP Conf Proc. 1218 (2010) 857–862. https://doi.org/10.1063/1.3422440

    Article  CAS  Google Scholar 

  36. Rao M G, and Kneisel P, Adv Cryog Eng Mater 424 (1994) 1383–1390. https://doi.org/10.1007/978-1-4757-9053-5_176

    Article  Google Scholar 

  37. Yang J, Dong H, Xia Y, Li P, and Wang B, Mat Sci Eng A Struct. 818 (2021) 141449. https://doi.org/10.1016/j.msea.2021.141449

    Article  CAS  Google Scholar 

  38. Sun Y F, Fujii H, Sato Y, and Morisada Y, J Mater Sci Technol. 35 (2019) 733–741. https://doi.org/10.1016/j.jmst.2018.11.011

    Article  CAS  Google Scholar 

  39. Zhang X, Wang K, Zhou Q, Kong J, and Williams S W, Mat Sci Eng A Struct. 773 (2020) 138856. https://doi.org/10.1016/j.msea.2019.138856

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Anhui Provincial Key Research and Development Plan (Grant No. 202104a05020079). The authors deeply appreciate the grant and financial support. The authors are also thankful to the Hefei Jvneng Electrio Physics High-tech Development Co. for the provision of welding equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, J., Wu, J., Liu, Z. et al. Effect of Oscillating Patterns on the Weld Formation, Microstructure, and Tensile Properties of 1.7-mm Recrystallized Niobium Sheets. Trans Indian Inst Met 76, 1291–1301 (2023). https://doi.org/10.1007/s12666-022-02798-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02798-w

Keywords

Navigation