Skip to main content
Log in

Determination and Characterization of Heat Input, Microstructure and Performance in Cold Metal Transfer Weld-Brazing of Dissimilar AA6061-T6 to SS304 Sheets

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Aluminum-steel hybrid structures have great application prospects in lightweight vehicles. In this study, AA6061-T6 and SS304 with 3 mm thickness and 10 mm lap width were welded-brazed by Cold Metal Transfer process. Both electric parameters and droplets transfer were monitored. An improved discretization method was employed to calculate the equivalent welding parameters. Macro and microstructures were characterized by OM, SEM with EDS and XRD, and the tensile-shear strength, Vickers and nanohardness were measured to evaluate the mechanical properties of the joints. CMT welding process is a short-circuit transfer mode with one pulse one droplet. With the increase in heat input, welding cycle and interfacial layer thickness increased. Al9Fe2Si2 and FeAl5 or FeAl3 were found in the interfacial reaction zone. The intermetallic compounds whose hardness is 1.7 times of SS304 are the main reason for the fracture failure to appear at the interfacial layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schubert E, Klassen M, Zerner I, Walz G, and Sepold C, J Mater Process Technol 115 (2001) 2. https://doi.org/10.1016/S0924-0136(01)00756-7

    Article  Google Scholar 

  2. Kutsuna M, Yamagami N, Rathod M J, and Ammar Azar H Y, Weld Int 20 (2006) 446. https://doi.org/10.1533/wint.2006.3599

    Article  Google Scholar 

  3. Ozaki H, and Kutsuna M, Weld Int 23 (2009) 345. https://doi.org/10.1080/09507110802542718

    Article  Google Scholar 

  4. Jácome L A, Weber S, Leitner A, Arenholz E, and Pyzalla A R, Adv Eng Mater 11 (2009) 350. https://doi.org/10.1002/adem.200800319

    Article  CAS  Google Scholar 

  5. Song J L, Lin S B, Yang C L, Ma G C, and Liu H, Mater Sci Eng A 509 (2009) 31. https://doi.org/10.1016/j.msea.2009.02.036

    Article  CAS  Google Scholar 

  6. Dong H G, Hu W J, Duan Y P, Wang X D, and Dong C, J Mater Process Technol 212 (2012) 458. https://doi.org/10.1016/j.jmatprotec.2011.10.009

    Article  CAS  Google Scholar 

  7. Zhang H T, and Liu J K, Mater Sci Eng A 528 (2011) 6179. https://doi.org/10.1016/j.msea.2011.04.039

    Article  CAS  Google Scholar 

  8. El-Sayed M H, and Naka M, Sci Technol Weld Join 10 (2005) 27. https://doi.org/10.1179/174329305X19295

    Article  CAS  Google Scholar 

  9. Srinivas V, Singh A K, Krishna V G, and Reddy G M, J Mater Process Technol 252 (2018) 1. https://doi.org/10.1016/j.jmatprotec.2017.09.005

    Article  CAS  Google Scholar 

  10. Torkamany M J, Tahamtan S, and Sabbaghzadeh J, Mater Des 31 (2010) 458. https://doi.org/10.1016/j.matdes.2009.05.046

    Article  CAS  Google Scholar 

  11. Sun J H, Yan Q, Li Z G, and Huang J, Mater Des 90 (2016) 468. https://doi.org/10.1016/j.matdes.2015.10.154

    Article  CAS  Google Scholar 

  12. Xia H B, Zhao X Y, Tan C W, Chen B, and Li L Q, J Mater Process Technol 258 (2018) 9. https://doi.org/10.1016/j.jmatprotec.2018.03.010

    Article  CAS  Google Scholar 

  13. Yang J, Su J, Gao C, Zhao Y, and Yu Z, Opt Laser Technol 142 (2021) 1. https://doi.org/10.1016/j.optlastec.2021.107218

    Article  CAS  Google Scholar 

  14. Wang T, Zhang Y Y, Li X P, Zhang B G, and Feng J C, Vacuum 141 (2017) 281. https://doi.org/10.1016/j.vacuum.2017.04.029

    Article  CAS  Google Scholar 

  15. Carvalho G, Galvo I, Mendes R, Leal R M, and Loureiro A, J Mater Process Technol 283 (2020) 116707. https://doi.org/10.1016/j.jmatprotec.2020.116707

    Article  CAS  Google Scholar 

  16. Tanaka T, Morishige T, and Hirata T, Scr Mater 61 (2009) 756. https://doi.org/10.1016/j.scriptamat.2009.06.022

    Article  CAS  Google Scholar 

  17. Dong H G, Li Y G, Li P, Hao X H, and Yang G S, J Mater Process Technol 272 (2019) 17. https://doi.org/10.1016/j.jmatprotec.2019.04.039

    Article  CAS  Google Scholar 

  18. Ye Z, Huang J H, Gao W, Zhang Y F, and Yang J, Mater Des 123 (2017) 69. https://doi.org/10.1016/j.matdes.2017.03.039

    Article  CAS  Google Scholar 

  19. Shi Y, Shao L, Huang J, and Gu Y, Mater Sci Technol 29 (2013) 1118. https://doi.org/10.1179/1743284713Y.0000000291

    Article  CAS  Google Scholar 

  20. Yuan R, Deng S J, Cui H C, Chen Y X, and Lu F G, J Manuf Process 40 (2019) 37. https://doi.org/10.1016/j.jmapro.2019.03.005

    Article  Google Scholar 

  21. Mei S W, Gao M, Yan J, Zhang C, and Zeng X Y, Sci Technol Weld Join 18 (2013) 293. https://doi.org/10.1179/1362171813Y.0000000106

    Article  CAS  Google Scholar 

  22. Balasubramanian M, Choudary M V, Nagaraja A, and Sai K C, Mater. Today proc 33 (2020) 543. https://doi.org/10.1016/j.matpr.2020.05.225

    Article  CAS  Google Scholar 

  23. He H, Wu C G, Xie Z H, Liu Y T, Xu W H, and Jing Y, Metallogr Microstruct Anal 6 (2017) 82. https://doi.org/10.1007/s13632-016-0330-9

    Article  CAS  Google Scholar 

  24. Chen M A, Zhang D, and Wu C S, J Mater Process Technol 243 (2017) 395. https://doi.org/10.1016/j.jmatprotec.2017.01.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support for this research from the National Natural Science Foundation of China (51305461), the Natural Science Foundation of Shandong Province (ZR2018MEE020) and College Students’ Platform for Innovation and Entrepreneurship Training Program (S202110425010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Wang, X., Tang, S. et al. Determination and Characterization of Heat Input, Microstructure and Performance in Cold Metal Transfer Weld-Brazing of Dissimilar AA6061-T6 to SS304 Sheets. Trans Indian Inst Met 76, 1359–1369 (2023). https://doi.org/10.1007/s12666-022-02796-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02796-y

Keywords

Navigation