Skip to main content
Log in

Numerical Study of Ultrasonic Vibration-Driven Shot Impact on Pure Copper

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Aiming to investigate the effects of ultrasonic shot peening (USP) parameters on the USP-induced residual stresses and indentation profiles, a three-dimensional finite element model of ultrasonic vibration-driven shot impact on pure copper is developed, and the parametric analysis is detailedly investigated in terms of the shot size, horn surface topography, ultrasonic vibration frequency and horn vibration amplitude. The obtained results show that the ultrasonic vibration-driven shot impact frequency is improved by increasing the shot size. The stable shot velocity and the favorable in-depth residual stresses can be achieved by using the horn vibration amplitude of \(80\;{\mu m}\) in the case of 6 mm shot diameter and 20 kHz ultrasonic vibration frequency. The USP-induced residual stresses in the subsurface layer present an insignificant sensitivity to the ultrasonic vibration frequency. The horn concave-convex surface leads to the significant change of the indentation locations and in-depth residual stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Singh V, Pandey V, Kumar S, Srinivas N, Chattopadhyay K, T Indian I Metals 69 (2016) 295.

    Article  CAS  Google Scholar 

  2. Wang X, Xu C, Hu D, Li C, Liu C, Tang Z, J Mater Process Tech 296 (2021) 117209.

    Article  CAS  Google Scholar 

  3. Carneiro L, Wang X, Jiang Y, Int J Fatigue 134 (2020) 105469.

    Article  CAS  Google Scholar 

  4. Lu K, Lu J, Mat Sci Eng R 375 (2004) 38.

    Article  Google Scholar 

  5. Wang C, Wu G, He T, Zhou Y, Zhou Z, J Mater Eng Perform 29 (2020) 5525.

    Article  CAS  Google Scholar 

  6. Wang C, Wang X, Xu Y, Gao Z, Int J Mech Sci 108 (2016) 104.

    Article  Google Scholar 

  7. Soyama H, J Mater Process Tech 269 (2019) 65.

    Article  CAS  Google Scholar 

  8. Yin F, Rakita M, Hu S, Han Q, Surf Eng 33 (2017) 651.

    Article  CAS  Google Scholar 

  9. Wang C, Lai Y, Wang L, Wang C, Surf Coat Tech 383 (2020) 125247.

    Article  CAS  Google Scholar 

  10. Soady K A, Mater Sci Tech-Lond 29 (2013) 637.

    Article  CAS  Google Scholar 

  11. Manchoul S, Sghaier R B, Seddik R, Fathallah R, Mech Ind 19 (2018) 603.

    Article  Google Scholar 

  12. Yin F, Han Q, Rakita M, Wang M, Hua L, Wang C, Int J Comput Mater Sci Surf Eng 6 (2015) 97.

    CAS  Google Scholar 

  13. Badreddine J, Rouhaud E, Micoulaut M, Retraint D, Remy S, Francois M, Viot P, Doubre-Baboeuf G, Le Saunier D, Desfontaine V, Mech Ind 12 (2011) 223.

    Google Scholar 

  14. Zhang Y, Proust G, Retraint D, Wang H, Gan Y, Int J Mech Sci 161 (2019) 105060.

    Article  Google Scholar 

  15. Zhang Y, Proust G, Retraint D, Wang H, Gan Y, Int J Mech Sci 193 (2021) 106173.

    Article  Google Scholar 

  16. Chaise T, Li J, Nélias D, Kubler R, Taheri S, Douchet G, Robin V, Gilles P, J Mater Process Tech 212 (2012) 2080.

    Article  Google Scholar 

  17. Badreddine J, Rouhaud E, Micoulaut M, Remy S, Int J Mech Sci 82 (2014) 179.

    Article  Google Scholar 

  18. Yin F, Hua L, Wang X, Rakita M, Han Q, Comp Mater Sci 92 (2014) 28.

    Article  CAS  Google Scholar 

  19. Marteau J, Bigerelle M, Mazeran P E, Bouvier S, Tribol Int 82 (2015) 319.

    Article  CAS  Google Scholar 

  20. Marteau J, Bigerelle M, Tribol Int 83 (2015) 105.

    Article  CAS  Google Scholar 

  21. Chen H, Guan Y, Zhu L, Li L, Zhai J, Lin J, Mater Chem Phys 259 (2021) 124025.

    Article  CAS  Google Scholar 

  22. Xu Q, Cao Y, Cai J, Yu J, Si C, J Mater Res Technol 15 (2021) 384.

    Article  CAS  Google Scholar 

  23. Sandá A, Navas V G, Gonzalo O, Mater Design 32 (2011) 2213.

    Article  Google Scholar 

  24. Zhu L,Guan Y, Wang Y, Xie Z, Lin J, Zhai J, Surf Coat Tech 317 (2017) 38.

    Article  CAS  Google Scholar 

  25. Xing Y M, Lu J, J Mater Process Tech 152 (2004) 56.

    Article  CAS  Google Scholar 

  26. Wu G, Wang Z, Gan J, Yang G, Meng Q, Wei S, Surf Eng 35 (2019) 242.

    Article  CAS  Google Scholar 

  27. Chakrabarty R, Song J, Surf Coat Tech 397 (2020) 125981.

    Article  CAS  Google Scholar 

  28. Wang C, Hu X Y, Li K F, Li K, Wang L, Wang C L, Rare Metal Mat Eng 50 (2021) 3957.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the supports provided by Anhui Provincial Natural Science Foundation (2008085QE228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, X., Wang, C. Numerical Study of Ultrasonic Vibration-Driven Shot Impact on Pure Copper. Trans Indian Inst Met 76, 787–798 (2023). https://doi.org/10.1007/s12666-022-02791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02791-3

Keywords

Navigation