Skip to main content
Log in

Corrosion and Wear Behaviours of Aluminium Composites Reinforced with Palm Kernel Shell Ash and Silicon Carbide

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Corrosion and wear properties of hybrid aluminium matrix composites (HAMCs) reinforced with palm kernel shell ash and silicon carbide were studied. Composites with 6, 8, 10 and 12 wt% reinforcements and varied mix ratios were produced using double-step stir casting method. Corrosion in 0.3 M H2SO4 and 3.5% NaCl media were investigated using potentiodynamic polarization method, while the wear behaviour was evaluated using multifunction tribometer. The unreinforced aluminium (Al) alloy showed higher corrosion rates (1.2323 and 0.020167 mmpy for 0.3 M H2SO4 and 3.5% NaCl media, respectively) than most of the composites in both media. However, corrosion trends were invariant to reinforcement weight per cent and mix ratio. For wear behaviour, average COF were higher for most of the composites (within the ranges of 0.57–0.70 for 10 N load and 0.54–0.70 for 20 N) than unreinforced Al alloy (0.54 and 0.51 for 10 N and 20 N loads, respectively). Wear mechanism of the HAMCs was established to be predominantly abrasive and adhesive wear, facilitated by plastic shearing which resulted in extensive grooving and adhesion of wear debris on the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fanani E W A, Surojo E, Prabowo A R, and Akbar HI, Metals 11 (2021) 1919. https://doi.org/10.3390/met11121919.

    Article  CAS  Google Scholar 

  2. Mussatto A, Ahad I U I, Mousavian R T, Delaure Y, and Brabazon D, Eng Rep 3 (2021) e12330. https://doi.org/10.1002/eng2.12330.

    Article  CAS  Google Scholar 

  3. Srivyas P D, and Charoo M S, SPC Int J Eng Technol 7 (2018) 1172.

    Google Scholar 

  4. Oladayo O, and Sikirat A K, Mater Sci Eng Int J (2019). https://doi.org/10.15406/mseij.2019.03.00110.

  5. Idusuyi N, and Olayinka J I, Elsevier J Mater Res Technol 8 (2019) 3338.

    Article  CAS  Google Scholar 

  6. Bhuvaneswari V, Rajeshkumar L, and Ross K S, J Mater Res Technol 15 (2021) 2802.

    Article  CAS  Google Scholar 

  7. Jayashree P K, Gowrishankar M C, Sathyashankara S, Raviraj S, Pavan H, and Manjunath S, J Mater Res Technol 12 (2021) 2325.

    Article  Google Scholar 

  8. Kulkarni P P, Siddeswarappa B, and Kumar K S H, Sci Res Publ Open J Compos Mater 9 (2021).

  9. Adediran A A, Alaneme K K, Oladele I O, and Akinlabi E T, Cogent Eng 7 (2020) 1826634. https://doi.org/10.1080/23311916.2020.1826634.

    Article  Google Scholar 

  10. Dhanesh S, Kumar K S, Fayiz N K M, Yohannan L, and Sujith R, Mater Today Proc (2020). https://doi.org/10.1016/j.matpr.2020.06.325.

    Article  Google Scholar 

  11. Veličković S, Miladinović S, Stojanović B, Nikolić R R, Hadzima B, and Arsić D, Prod Eng Arch 18 (2018) 18. https://doi.org/10.30657/pea.2018.18.03.

    Article  Google Scholar 

  12. Akbar H I, SurojoE, Ariawan D, Putra G A, and Wibowo R T, Procedia Struct Integr 27 (2020) 62.

    Article  Google Scholar 

  13. Adeosun S O, Osoba L O, and Taiwo O O, Eng Technol Int J Chem Nuclear Metall Mater Eng 8 (2014).

  14. Emin A N, EuroEconomica 40 (2021). ISSN: 1582–8859.

  15. Subramani N, Haridass R, Pramodh S, Anand A P, and Manikandan N, Mater Today Proceed (2021) 1.

  16. Udoye N E, Fayomi O S I, and Inegbenebor A O, Procedia Manuf 35 (2019) 1383.

    Article  Google Scholar 

  17. Ononiwu N H, Ozoegwu C G, Madushele N, Akinribide O J, and Akinlabi E T, Biointerface Res Appl Chem 12 (2022) 4900.

    CAS  Google Scholar 

  18. Xavier L F, and Suresh P, Sci World J 2016 (2016) 1. https://doi.org/10.1155/2016/6538345.

    Article  CAS  Google Scholar 

  19. Deshmukh S, Joshi G, Ingle A, and Thakur D, Mater Today Proceed (2021) 1.

  20. Johny J S, Ganesan M, Santhamoorthy P, and Kuppan P, Mater Today Proceed 5 (2021) 13048.

    Google Scholar 

  21. Alaneme K K, Olubambi P A, Afolabi A S, and Bodurin M O, Int J Electrochem Sci 9 (2014) 5663.

    Google Scholar 

  22. Alaneme K K, and Olubambi P A, J Mater Res Technol 2 (2013) 188.

    Article  Google Scholar 

  23. Alaneme K K, Ekperusi J O, and Oke S R, J King Saud Univ Eng Sci 30 (2018) 391.

    Google Scholar 

  24. Alaneme K K, Eze H I, and Bodunri M O, J Pract Technol 129 (2015). ISSN 1583-1078.

  25. Ikubanni P P, Oki M, Adeleke A A, Adediran A A, Agboola O O, Babayeju O, Egbo N, and Omiogbemi I M B, Mater Today Proc (2012). https://doi.org/10.1016/j.matpr.2021.03.537.

    Article  Google Scholar 

  26. Ikele U S, Alaneme K K, and Oyetunji A, Manuf Rev 9 (2022) 12. https://doi.org/10.1051/mfreview/2022011.

    Article  CAS  Google Scholar 

  27. Alaneme K K, and Aluko A O, Sci Iran A 19 (4) (2012).

  28. Mahaviradhan N, and Sivaganesan S, Mater Today Proc 1–7 (2020)

  29. Alaneme K K, Adegun M H, Archibong A G, and Okotete E A, J Chem Technol Metall 54 (2019) 1361.

    CAS  Google Scholar 

  30. Alaneme K K, and Bamike B J, Ain Shams Eng J 9 (218) 2815.

  31. Singh H, Singh K, Vardhan S, and Mohan S, Mater Today Proc (2021). https://doi.org/10.1016/j.matpr.2021.12.359.

  32. ASTM G5-14, Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements (2021).

  33. ASTM G99-17 Standard Test Method for Wear Testing With A Pin-On-Disk Apparatus (2017).

  34. Adebayo A O, Alaneme K K, and Oyetunji A, J Chem Technol Metall 56 (2021) 180.

    CAS  Google Scholar 

  35. Alaneme K K, Ajibuwa O A, Kolawole I E, and Fajemisin A V, Acta Metall Slovaca 23 (2017) 171.

    Article  Google Scholar 

  36. Deepa P, and Padmalatha R, King Saud Univ Arab J Chem 10 (2017) S2234

    CAS  Google Scholar 

  37. Maji P, Nath R K, Paul P, Meitei R K B, and Ghosh S K, J Manuf Process 69 (2021) 1.

    Article  Google Scholar 

  38. Ghandvar H, Idris M H, Ahmad N, and Moslemi N, J Appl Res Technol 15 (217) 533.

  39. Samal P, Vundavilli P R, Meher A, and Mahapatra M M, J Manuf Process 59 (2020) 131.

    Article  Google Scholar 

  40. Hutchings I M, Proc Inst Mech Eng Part J J Eng Tribol 216 (2002) 55. https://doi.org/10.1243/1350650021543898.

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Mxolisi Brendon Shongwe: Department of Chemical, Metallurgical and Materials Engineering; Tshwane University of Technology, Pretoria, South Africa is appreciated for his contributions towards the wear testing of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udochukwu Samuel Ikele.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikele, U.S., Alaneme, K.K. & Oyetunji, A. Corrosion and Wear Behaviours of Aluminium Composites Reinforced with Palm Kernel Shell Ash and Silicon Carbide. Trans Indian Inst Met 76, 765–776 (2023). https://doi.org/10.1007/s12666-022-02760-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02760-w

Keywords

Navigation