Skip to main content
Log in

Robocasting Additive Manufacturing of Titanium and Titanium Alloys: A Review

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Robocasting, also known as Direct Ink Writing, is emerging as an additive manufacturing technology for titanium and its alloys. It is a material extrusion method that deposits a suspension of titanium particles (ink) to fabricate structures designed in silico. The structures are made of unbounded titanium particles and require sintering to become a continuous mechanically stable solid. The removal of the binder is a very important operation performed before sintering to satisfy the chemical, mechanical, and metallurgical specifications of the titanium standards. Currently, relatively small porous titanium structures have been fabricated by robocasting, mainly for bone repair applications but also for catalyst supports. Progress in the robocasting of titanium and its alloys is modest but promising, offering opportunities with significant impact in advanced titanium applications. This review presents the state of the art of robocasting of titanium metallic materials, as well as discusses the mechanical properties and current applications of manufactured parts. The review also provides an overview of current challenges and limitations and offers guidelines for the new directions that future research and technology development can take in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E Peng D Zhang J Ding 2018 Adv. Mater. 30 1 14 https://doi.org/10.1002/adma.201802404

    Article  CAS  Google Scholar 

  2. VG Rocha E Saiz IS Tirichenko E García-Tuñón 2020 J. Mater. Chem. A 8 15646 15657 https://doi.org/10.1039/d0ta04181e

    Article  CAS  Google Scholar 

  3. J Cesarano 1999 Mater. Res. Soc. Symp. - Proc. 542 133 139 https://doi.org/10.1557/proc-542-133

    Article  CAS  Google Scholar 

  4. JE Smay J Cesarano JA Lewis 2002 Langmuir 18 5429 5437 https://doi.org/10.1021/la0257135

    Article  CAS  Google Scholar 

  5. M Coffigniez L Gremillard M Perez S Simon C Rigollet E Bonjour P Jame X Boulnat 2021 Acta Mater. 219 117224https://doi.org/10.1016/j.actamat.2021.117224

    Article  CAS  Google Scholar 

  6. M Coffigniez L Gremillard S Balvay J Lachambre J Adrien X Boulnat 2021 Addit. Manuf. 39 101859https://doi.org/10.1016/j.addma.2021.101859

    Article  CAS  Google Scholar 

  7. EB Montufar S Tkachenko M Casas-Luna P Škarvada K Slámečka S Diaz-de-la-Torre D Koutný D Paloušek Z Koledova L Hernández-Tapia T Zikmund L Čelko J Kaiser 2020 Addit. Manuf. 36 101516https://doi.org/10.1016/j.addma.2020.101516

    Article  CAS  Google Scholar 

  8. H Elsayed N Novak M Vesenjak F Zanini S Carmignato L Biasetto 2020 Mater. Sci. Eng. A 787 139484https://doi.org/10.1016/j.msea.2020.139484

    Article  CAS  Google Scholar 

  9. M Yetna N’Jock E Camposilvan L Gremillard E Maire D Fabrègue D Chicot K Tabalaiev J Adrien 2017 Mater. Des. 121 345 354 https://doi.org/10.1016/j.matdes.2017.02.066

    Article  CAS  Google Scholar 

  10. D Herzog V Seyda E Wycisk C Emmelmann 2016 Acta Mater. 117 371 392 https://doi.org/10.1016/j.actamat.2016.07.019

    Article  CAS  Google Scholar 

  11. M Li W Du A Elwany Z Pei C Ma 2020 J Manuf. Sci. Eng. Trans. ASME 142 1 17 https://doi.org/10.1115/1.4047430

    Article  Google Scholar 

  12. N Sears P Dhavalikar 2017 Whitely M & Cosgriff-Hernandez E 9 025020https://doi.org/10.1088/1758-5090/aa7077

    Article  CAS  Google Scholar 

  13. Kashimbetova A, Tkachenko S, Slámečka K, Remešová M, Klakurková L, Pavloušková Z, Čelko L, Montufar EB, Met. 2021 - 30th Anniv. Int. Conf. Metall. Mater. Conf. Proc., (2021) 1215–1221. https://doi.org/10.37904/metal.2021.4263.

  14. E Vidal D Torres J Guillem-Marti G Scionti JM Manero MP Ginebra D Rodríguez E Rupérez 2020 Metals (Basel) 10 1 18 https://doi.org/10.3390/met10091156

    Article  CAS  Google Scholar 

  15. Y Chen P Han LJ Vandi A Dehghan-Manshadi J Humphry D Kent I Stefani P Lee M Heitzmann J Cooper-White M Dargusch 2019 Mater. Sci. Eng. C 95 160 165 https://doi.org/10.1016/j.msec.2018.10.033

    Article  CAS  Google Scholar 

  16. H Sopha A Kashimbetova L Hromadko I Saldan L Celko EB Montufar JM Macak 2021 Nano Lett. 21 8701 8706 https://doi.org/10.1021/acs.nanolett.1c02815

    Article  CAS  Google Scholar 

  17. C Xu Q Wu G L’Espérance LL Lebel D Therriault 2018 Mater. Des. 160 262 269 https://doi.org/10.1016/j.matdes.2018.09.024

    Article  CAS  Google Scholar 

  18. JP Li JR Wijn De CA Blitterswijk Van K Groot De 2006 Biomaterials 27 1223 1235 https://doi.org/10.1016/j.biomaterials.2005.08.033

    Article  CAS  Google Scholar 

  19. del-Mazo-Barbara L & Ginebra MP, J. Eur. Ceram. Soc., 41 (2021) 18–33. https://doi.org/10.1016/j.jeurceramsoc.2021.08.031.

  20. M Hojati H Danninger C Gierl-Mayer 2022 Metals (Basel) 12 13 https://doi.org/10.3390/met12010013

    Article  CAS  Google Scholar 

  21. JP Li JR Wijn De CA Blitterswijk Van Groot K De 2005 J. Mater. Sci. Mater. Med. 16 1159 1163 https://doi.org/10.1007/s10856-005-4723-6

    Article  CAS  Google Scholar 

  22. H Elsayed P Rebesan G Giacomello M Pasetto C Gardin L Ferroni B Zavan L Biasetto 2019 Mater. Sci. Eng. C 103 109794https://doi.org/10.1016/j.msec.2019.109794

    Article  CAS  Google Scholar 

  23. L Čelko V Gutiérrez-Cano M Casas-Luna J Matula C Oliver-Urrutia M Remešová K Dvořák T Zikmund J Kaiser EB Montufar 2021 Addit. Manuf. 47 102272https://doi.org/10.1016/j.addma.2021.102272

    Article  CAS  Google Scholar 

  24. P Skalka K Slámečka EB Montufar L Čelko 2019 J. Eur. Ceram. Soc. 39 1586 1594 https://doi.org/10.1016/j.jeurceramsoc.2018.12.024

    Article  CAS  Google Scholar 

  25. T Takizawa N Nakayama H Haniu K Aoki M Okamoto H Nomura M Tanaka A Sobajima K Yoshida T Kamanaka K Ajima A Oishi C Kuroda H Ishida S Okano S Kobayashi H Kato N Saito 2018 Adv. Mater. 30 1 11 https://doi.org/10.1002/adma.201703608

    Article  CAS  Google Scholar 

  26. S Liu YC Shin 2019 Mater. Des. 164 107552https://doi.org/10.1016/j.matdes.2018.107552

    Article  CAS  Google Scholar 

  27. J Yang H Yu J Yin M Gao Z Wang X Zeng 2016 Mater. Des. 108 308 318 https://doi.org/10.1016/j.matdes.2016.06.117

    Article  CAS  Google Scholar 

  28. E Wheat M Vlasea J Hinebaugh C Metcalfe 2018 Mater. Des. 156 167 183 https://doi.org/10.1016/j.matdes.2018.06.038

    Article  CAS  Google Scholar 

  29. E Sheydaeian E Toyserkani 2017 J Manuf. Process 26 330 338 https://doi.org/10.1016/j.jmapro.2017.03.001

    Article  Google Scholar 

  30. E Stevens S Schloder E Bono D Schmidt M Chmielus 2018 Addit. Manuf. 22 746 752 https://doi.org/10.1016/j.addma.2018.06.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support of the Ministry of Education, Youth and Sports of the Czech Republic (LTAIN19112). C.O.U. acknowledges the CONACYT Grant 2021-000012-01EXTV-00057. A.K. acknowledges the Brno Ph.D. Talent scholarship funded by the Brno City Municipality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar B. Montufar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliver-Urrutia, C., Kashimbetova, A., Slámečka, K. et al. Robocasting Additive Manufacturing of Titanium and Titanium Alloys: A Review. Trans Indian Inst Met 76, 389–402 (2023). https://doi.org/10.1007/s12666-022-02755-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02755-7

Keywords

Navigation