Skip to main content

Advertisement

Log in

The Effects of Oxide Layer on the Joining Performance of CuZr Metallic Glasses

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Using molecular dynamics (MD) simulation, the pressure bonding of Cu54Zr46 metallic glass (MG) was performed under the introduction of an oxygen layer at the interface with different thicknesses. The results indicated that the evolution of the oxide layer in the joint zone was consistent with the inverse logarithmic law, which meant that the oxide growth occurred through an ionic drift process. It was also found that the high concentration of oxygen at the interface led to the deterioration of Cu-centered clusters, while the low content of oxygen intensified the backbone of the matrix in the vicinity of base metal. Moreover, the MD outcomes demonstrated that the diffusivity of elements increased with the rise of system temperature, leading to the widening of the joint zone. It was also revealed that an optimized oxygen layer tuned the strain distribution in the joint zone and increased the bonding strength. On the other hand, the thicker oxide layer led to the brittleness of the joint zone, so that a catastrophic failure with a sharp necking event occurred under the tensile loading. In total, this work shed light on the importance of oxide layer and system temperature on the joining performance of MGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zou Y M, Wu Y S, Li K F, Tan C L, Qiu Z G, and Zeng D C, Mater Lett 272 (2020) 127824.

    Article  CAS  Google Scholar 

  2. Samavatian M, Gholamipour R, and Samavatian V, Comput Mater Sci 186 (2021) 110025. https://doi.org/https://doi.org/10.1016/j.commatsci.2020.110025.

    Article  CAS  Google Scholar 

  3. Luo X, Meng M, Li R, Li Z, Cole I S, Chen X -B, and Zhang T, Mater Des 196 (2020) 109109.

    Article  CAS  Google Scholar 

  4. Jiao Y, Brousseau E, Ayre W N, Gait-Carr E, Shen X, Wang X, Bigot S, Zhu H, and He W, Appl Surf Sci 547 (2021) 149194.

    Article  CAS  Google Scholar 

  5. Li H, Li Z, Yang J, Ke H B, Sun B, Yuan C C, Ma J, Shen J, and Wang W H, Sci China Mater 64 (2021) 964. https://doi.org/https://doi.org/10.1007/s40843-020-1561-x.

    Article  CAS  Google Scholar 

  6. Yu X, Huang J, Shao L, Zhang Y, Fan D, Kang Y, and Yang F, Mater Res Express 6 (2018) 26511.

    Article  Google Scholar 

  7. Li J F, Sun Y H, Ding D W, Wang W H, and Bai H Y, J Non Cryst Solids 537 (2020) 120016. https://doi.org/https://doi.org/10.1016/j.jnoncrysol.2020.120016.

    Article  CAS  Google Scholar 

  8. Liao C, Liu M, Zhang Q, Dong W, Zhao R, Li B, Jiao Z, Song J, Yao W, Zhao S, Bai H, and Wang W -H, Sci China Mater 64 (2021) 979. https://doi.org/10.1007/s40843-020-1533-x.

  9. Feng J, Chen P, and Zhou Q, J Mater Eng Perform 27 (2018) 2932. https://doi.org/https://doi.org/10.1007/s11665-018-3396-5.

    Article  CAS  Google Scholar 

  10. Hanliang L, Ning L, Xiaojie L, Xin S, Tao S, and Zhanguo M, J Manuf Process 45 (2019) 115. https://doi.org/https://doi.org/10.1016/j.jmapro.2019.06.035.

    Article  Google Scholar 

  11. Wang D, Li N, and Liu L, Intermetallics 93 (2018) 180. https://doi.org/https://doi.org/10.1016/j.intermet.2017.12.006.

    Article  CAS  Google Scholar 

  12. Jamili-Shirvan Z, Haddad-Sabzevar M, Vahdati-Khaki J, and Yao K -F, J. Non Cryst Solids 544 (2020) 120188. https://doi.org/https://doi.org/10.1016/j.jnoncrysol.2020.120188.

    Article  CAS  Google Scholar 

  13. Singh R, Gupta P, and Yedla N, Mol Simul 45 (2019) 1549. https://doi.org/https://doi.org/10.1080/08927022.2019.1661411.

    Article  CAS  Google Scholar 

  14. Jiang M, Can Y, Xiaodi L, Baoshuang S, Quanfeng H, Fucheng L, Tianyu W, Dan W, Xiong L, Xiaoyu W, Yunjiang W, Feng G, Pengfei G, Weihua W, and Yong Y, Sci Adv 5 (2021) eaax7256. https://doi.org/10.1126/sciadv.aax7256.

  15. Zhang Y, Li J, Zhou H, Hu Y, Ding S, and Xia R, J. Mater Sci 56 (2021) 15906. https://doi.org/https://doi.org/10.1007/s10853-021-06336-9.

    Article  CAS  Google Scholar 

  16. Li X, Liang X, Zhang Z, Ma J, and Shen J, Scr Mater 185 (2020) 100. https://doi.org/https://doi.org/10.1016/j.scriptamat.2020.03.059.

    Article  CAS  Google Scholar 

  17. Huang Z, Fu J, Li X, Wen W, Lin H, Lou Y, Luo F, Zhang Z, Liang X, and Ma J, Sci China Mater (2021). https://doi.org/https://doi.org/10.1007/s40843-021-1723-6.

    Article  Google Scholar 

  18. Zhou W H, Duan F H, Meng Y H, Zheng C C, Chen H M, Huang A G, Wang Y X, and Li Y, Acta Mater 220 (2021) 117345. https://doi.org/10.1016/j.actamat.2021.117345.

  19. Pacheco V, Karlsson D, Marattukalam J J, Stolpe M, Hjörvarsson B, Jansson U, and Sahlberg M, J Alloys Compd 825 (2020) 153995. https://doi.org/10.1016/j.jallcom.2020.153995.

  20. Wang C, Shang S -L, You J, Bocklund B, Wang Y, Wang H -Y, and Liu Z -K, Metall Mater Trans A 52 (2021) 2501. https://doi.org/10.1007/s11661-021-06242-4

  21. Zhang M, Cai H, Zhang J, Li Q, Wang Y, Huang T, Liu J, and Wang X, Corros Sci 182 (2021) 109275. https://doi.org/https://doi.org/10.1016/j.corsci.2021.109275.

    Article  CAS  Google Scholar 

  22. Cao D, Wu Y, Li H X, Liu X J, Wang H, Wang X Z, and Lu Z P, Intermetallics 99 (2018) 44. https://doi.org/https://doi.org/10.1016/j.intermet.2018.05.007.

    Article  CAS  Google Scholar 

  23. Kim Y -M, and Lee B -J, J Mater Res 23 (2008) 1095. https://doi.org/10.1557/jmr.2008.0130.

  24. Tuckerman M E, Alejandre J, López-Rendón R, Jochim A L, and Martyna G J, J Phys A Math Gen 39 (2006) 5629.

    Article  CAS  Google Scholar 

  25. Liang T, Shan T -R, Cheng Y -T, Devine B D, Noordhoek M, Li Y, Lu Z, Phillpot S R, and Sinnott S B, Mater Sci Eng R Rep 74 (2013) 255. https://doi.org/10.1016/j.mser.2013.07.001.

  26. Stukowski A, Model Simul Mater Sci Eng 18 (2009) 15012.

    Article  Google Scholar 

  27. Narula M L, Tare V B, and Worrell W L, Metall Trans B 14 (1983) 673. https://doi.org/https://doi.org/10.1007/BF02653953.

    Article  Google Scholar 

  28. Domagala R F, and McPherson D J, JOM 6 (1954) 238. https://doi.org/https://doi.org/10.1007/BF03398005.

    Article  CAS  Google Scholar 

  29. Yang J C, Kolasa B, Gibson J M, and Yeadon M, Appl Phys Lett 73 (1998) 2841.

    Article  CAS  Google Scholar 

  30. Chen C -H, Yamaguchi T, Sugawara K, and Koga K, J Phys Chem B 109 (2005) 20669.

  31. Xu Z, Rosso K M, and Bruemmer S, Phys Chem Chem Phys 14 (2012) 14534.

    Article  CAS  Google Scholar 

  32. Cabrera N, and Mott N F, Rep Prog Phys 12 (1949) 163.

    Article  CAS  Google Scholar 

  33. Garruchet S, Politano O, Arnoux P, and Vignal V, Solid State Commun 150 (2010) 439. https://doi.org/10.1016/j.ssc.2009.12.012.

  34. Nakamura R, Toda T, Tsukui S, Tane M, Ishimaru M, Suzuki T, and Nakajima H, J Appl Phys 116 (2014) 33504.

    Article  Google Scholar 

  35. Bokov D O, Suksatan W, Widjaja G, Khoiri A, Mahmoud M Z, Al Mashhadani Z I, Jabbar A H, Chupradit S, Abbas H, and Kadhim M M, Appl Phys A 128 (2022) 1.

    Article  Google Scholar 

  36. Samavatian M, Gholamipour R, Amadeh A A, and Mirdamadi S, J Non Cryst Solids 506 (2019) 39. https://doi.org/https://doi.org/10.1016/j.jnoncrysol.2018.12.007.

    Article  CAS  Google Scholar 

  37. Zhang J, Oganov A R, Li X, Dong H, and Zeng Q, Phys Chem Chem Phys 17 (2015) 17301.

    Article  CAS  Google Scholar 

  38. Martens G, Rabe P, Schwentner N, and Werner A, Phys Rev B 17 (1978) 1481.

    Article  CAS  Google Scholar 

  39. Murty B S, Ping D H, Hono K, and Inoue A, Appl Phys Lett 76 (2000) 55.

    Article  CAS  Google Scholar 

  40. Zhang J, Wang X, and Li M, J. Alloys Compd. 881 (2021) 160521.

    Article  CAS  Google Scholar 

  41. Yang X Y, Ye Y Y, Kramer M J, and Sordelet D J, J Alloys Compd 484 (2009) 914. https://doi.org/https://doi.org/10.1016/j.jallcom.2009.05.078.

    Article  CAS  Google Scholar 

  42. Zhang L, Jiang B T, Liang Y F, Huang Y J, and Sun J F, Mater Charact 174 (2021) 111001. https://doi.org/https://doi.org/10.1016/j.matchar.2021.111001.

    Article  CAS  Google Scholar 

  43. Delogu F, Molecular dynamics study of size effects in the compression of metallic glass nanowires, Phys Rev B 79 (2009) 184109.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravindhan Surendar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasim, S.A., Jabbar, A.H., Bokov, D.O. et al. The Effects of Oxide Layer on the Joining Performance of CuZr Metallic Glasses. Trans Indian Inst Met 76, 239–247 (2023). https://doi.org/10.1007/s12666-022-02739-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02739-7

Keywords

Navigation