Skip to main content
Log in

Development and Characterization of Ba0.5Sr0.5(Co1−xMgx)0.2Fe0.8O3 Cathode Materials System for Low-Temperature Solid Oxide Fuel Cell (LT-SOFC) Applications

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Cathode powders of Ba0.5Sr0.5(Co1−xMgx)0.2Fe0.8O3 system (where x = 0, 0.2, 0.4, 0.6, 0.8, 1) were prepared by solid-state reaction route with an objective to reduce the coefficient of thermal expansion (CTE) by lowering Co concentration and by doping Mg for low-temperature solid oxide fuel cell (SOFC) applications. The relative density of the produced cathodes was measured, and from the values, the presence of porosity was observed. With the increased sintering temperature from 900 to 1175 °C, the density was significantly increased. X-ray diffraction analysis was carried out for all the samples, and formation of no new phases was observed. The average crystallite size was measured as ~ 18 nm with perovskite type structure. The lattice parameters were calculated, and the unit cell dimension (a) was measured as increased with the increased content of Mg. The temperature-dependent electric conductivity of the prepared samples was measured from room temperature to 800 °C. Highest conductivity was observed for the cathode with Co0.08 and Mg0.12 composition. The presence of Co showed profound effect on increasing the electric conductivity of the cathode material compared with Mg. However, coefficient of thermal expansion (CTE) was observed as lower (13.5 × 10–6/°C) for Mg-rich and Co-free cathode, which is favourable for SOFC applications. The results demonstrate the promising role of doping Mg ion in developing low-temperature SOFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saddam H, Li Y, Energy Transitions, 2021, https://doi.org/https://doi.org/10.1007/s41825-020-00029-8.

    Article  Google Scholar 

  2. Mclean G F, NietT, Prince-Richard S, DjilaliN, Int. J. Hydrogen Energy 27 (2002) 507.

    Article  CAS  Google Scholar 

  3. SammesN, BoveR, Stahl K, Curr Opin Solid State Mater Sci 8 (2004) 372.

    Article  CAS  Google Scholar 

  4. Zhang H, Shen P K, Chem Soc Rev 41 (2012) 2382.

    Article  CAS  Google Scholar 

  5. Dicks A L, Curr Opin Solid State Mater Sci 8 (2004) 379.

    Article  CAS  Google Scholar 

  6. Brett D J, Atkinson A, Brandon N P, Skinner S J, Chem Soc Rev 37 (2008) 1568.

    Article  CAS  Google Scholar 

  7. SinghalS C, Kendal K, High Temperature Solid Oxide Fuel Cells, Elsevier, Netherlands (2003)

    Google Scholar 

  8. Istomin SY, Antipov E V, Russ Chem Rev 82(2013) 686.

    Article  Google Scholar 

  9. Lee K T, WachsmanE D, MRS Bull 39 (2014) 783.

    Article  CAS  Google Scholar 

  10. An J, Shim J H, Kim Y, Park J S, Lee W, Gur T M, PrinzF B, MRS Bull 39 (2014) 798.

    Article  CAS  Google Scholar 

  11. Chen Y, Zhou W, Ding D, Liu M, Ciucci F, Tade M, Shao Z, Adv Energy Mater 5 (2015) 1500537

    Article  Google Scholar 

  12. Sun J, Liu X, Han F, Zhu L, Bi H, Wang H, Yu S, Pei L, Solid State Ionics 288, (2016) 54.

    Article  CAS  Google Scholar 

  13. Choi S, Yoo S, Kim J, Park S, Jun A, Sengodan S, Kim J, Shin J, Jeong H Y, Choi Y, Kim G, Liu M, Sci Rep 3 (2013) 3.

    Google Scholar 

  14. Dai H, Kou H, Tao Z, Liu K, Xue M, Zhang Q, Bi L, Ceram Int 46 (2020) 6987.

    Article  CAS  Google Scholar 

  15. Baumann FS, Fleig J, Cristiani G, Stuhlhofer B, Habermeier H U, Maier J, J Electrochem Soc 154, (2007) B931.

    Article  CAS  Google Scholar 

  16. Wang B, Bi L, Zhao X S, Ceram Int 44 (2018) 5139.

    Article  CAS  Google Scholar 

  17. Lee SJ, YongSM, Kim DS, Kim D K, Int J Hydrogen Energy 37 (2012) 17217.

    Article  CAS  Google Scholar 

  18. Duan C, Hook D, Chen Y, Tong J, O’Hayre R, Energy Environ Sci 10(2017) 176.

    Article  CAS  Google Scholar 

  19. Martinelli H, Lamas D G, Leyva A G, Sacanell J, Mater Rse Expresss 5(2018) 075013.

    Article  Google Scholar 

  20. Abdalla A M, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG, Azad A K, Renew Sustain Energy Rev 82 (2018) 353.

    Article  CAS  Google Scholar 

  21. HabiballahAS, Nafisah O, Abdul MJ, Ceram Int 46(14) (2020) 23262.

    Article  CAS  Google Scholar 

  22. Zhao S, Tian N, Yu J, J Alloys Compd 825 (2020) 154013.

    Article  CAS  Google Scholar 

  23. Liu, D, Dou Y, Xia T, Li Q, Sun L, Huo L, Zhao H, J Power Sources, 494 (2021) 229778.

    Article  CAS  Google Scholar 

  24. Zeng Q, Zhang X, Wang W, Zhang D, Jiang Y, Zhou X, Lin B, Catalysts 10(2) (2020) 235.

    Article  CAS  Google Scholar 

  25. Gou M, Ren R, Sun W, Xu C, Meng X, Wang Z, Qiao J, Sun K, Ceram Int 45(12) (2019) 15696 -15704.

    Article  Google Scholar 

  26. Li X, Liu Y, Liu W, Wang C, Xu X, Dai H, Wang X, Bi L, Sustain Energ Fuels, 5 (2021) 4261-4267.

    Article  CAS  Google Scholar 

  27. Meffert M, Unger L S, Störmer H, Sigloch F, Wagner S F, Ivers-Tiffée E, Gerthsen D, J Am Ceram Soc 102 (2019) 4929–4942.

    Article  CAS  Google Scholar 

  28. William D Callister Jr, David G Rethwisch, Materials Science and Engineering: An Introduction, 2013, Wiley, USA.

  29. Randall G, Sintering: From Empirical Observations to Scientific Principles, Elsevier, USA, (2014)

    Google Scholar 

  30. Kamila R, Kurniawan B, IOP Conf Ser: Mater Sci Eng 496 (2019) 012019.

    Article  CAS  Google Scholar 

  31. Bilgili O, Acta Phys Pol A, 136 (2019) 460-466.

    Article  CAS  Google Scholar 

  32. Chen G, Feldhoff A, Weidenkaff A et al., Adv Funct Mater, 32(6) (2022) 2105702.

    Article  CAS  Google Scholar 

  33. Minh-Vien Lea, Dah-Shyang Tsaib, Tuan-Anh Nguyena, Ceram Int, 44 (2018) 1726.

    Article  Google Scholar 

  34. Tatsumi Ishihara, Nigel M. Sammes, Osamu Yamamoto, High Temperature Solid Oxide Fuel Cells 4 (2003) 83.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. C. K. Subhashini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subhashini, P.V.C.K., Rajesh, K.V.D. Development and Characterization of Ba0.5Sr0.5(Co1−xMgx)0.2Fe0.8O3 Cathode Materials System for Low-Temperature Solid Oxide Fuel Cell (LT-SOFC) Applications. Trans Indian Inst Met 76, 59–65 (2023). https://doi.org/10.1007/s12666-022-02699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02699-y

Keywords

Navigation