Skip to main content
Log in

Microstructure and Corrosion Behavior of MAO-SG Composite Coating on 7075 Aluminum Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

To improve the corrosion resistance of 7075 aluminum alloy microarc oxidation (MAO) coating, graphene of 3 g/L was adsorbed and deposited in the coating. Then, the microarc oxidation–sol–gel (MAO-SG) composite coating was obtained by sealing the micropores of the coating with TiO2 sol–gel. Electrochemical tests of 7075 aluminum alloy matrix, undoped sample, doped graphene sample and sealed sample were carried out in 3.5wt.% NaCl solution. The results show that compared with the blank sample, the self-corrosion potential of the sealed sample is increased by 98.1%, and the self-corrosion current density is reduced by 4 orders of magnitude. After immersion corrosion for 720 h, the corrosion rate of MAO-SG composite coating is 3.4 × 10–5 mm/a, and its corrosion resistance is still better than that of single MAO coating. This is due to the strong conductivity of graphene and the blocking effect of TiO2 sol–gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rasoul J N, Ali F and Mahdi S, Electromagnetically activated high-speed hydroforming process: A novel process to overcome the limitations of the electromagnetic forming process. CIRP J Mater Sci Technol 27 (2019) 21–30. https://doi.org/https://doi.org/10.1016/j.cirpj.2019.09.002

    Article  Google Scholar 

  2. Yu H P, Sun L C, Zhang X, Wang S L and Li C F, Experiments on electrohydraulic forming and electromagnetic forming of aluminum tube. Int J Adv Manuf Technol 89 (2017) 3169–3176. https://doi.org/https://doi.org/10.1007/s00170-016-9261-5

    Article  Google Scholar 

  3. Hosseinabadi O F and Khedmati M R, A review on ultimate strength of aluminium structural elements and systems for marine applications. Ocean Eng 232 (2021) 109153. https://doi.org/https://doi.org/10.1016/j.oceaneng.2021.109153

    Article  Google Scholar 

  4. Guo W M, Sun M X, Qiu R, Hou J, Fan L, Pang K and Xu L K, Research progress on corrosion and aging of materials in deep-sea environment. Corrosion Science and Protection Technology 29 (2017) 313–317. https://doi.org/10.11903/1002.6495.2016.288

  5. Xiao W and Wang Y, Corrosion resistance of aluminum fluoride modified 6061 aluminum alloy. Mater Lett 298 (2021). https://doi.org/10.1016/j.matlet.2021.129932

  6. Zhang B, Fang Z, Li X and Dong C, Status and prospect of corrosion protection technology about aluminium alloy ship(Article). Materials China 33 (2014) 414-417. https://doi.org/https://doi.org/10.7502/j.issn.1674-3962.2014.07.05

    Google Scholar 

  7. Zhang J, Wang J, Zhang B B, Zeng Y X, Duan J Z and Hou B R, Fabrication of anodized superhydrophobic 5083 aluminum alloy surface for marine anti-corrosion and anti-biofouling. J Oceanol Limnol 38 (2020) 1246-1255. https://doi.org/https://doi.org/10.1007/s00343-020-0036-3

    Article  CAS  Google Scholar 

  8. Pokhmurska H V, Student M M, Veselivska H H, Zadorozhna Kh R, Gvozdetskii V M and Yuskiv V M, Corrosion-Electrochemical Behavior of 7075 Aluminum Alloy Laser-Modified with SiC Carbides in Neutral Aqueous Solutions. Mater Sci (2021) 1–7. https://doi.org/10.1007/s11003-021-00473-x

  9. Quazi M M, Fazal M A, Haseeb A S M A, Yusof F, Masjuki H H and Arslan A, Laser-based Surface Modifications of Aluminum and its Alloys(Article). Crit Rev Solid State Mat Sci 41 (2016) 106-131. https://doi.org/https://doi.org/10.1080/10408436.2015.1076716

    Article  CAS  Google Scholar 

  10. Zheng S L, Li C, Fu Q T, Li M, Hu W, Wang Q, Du M P, Liu X C and Chen Z, Fabrication of self-cleaning superhydrophobic surface on aluminum alloys with excellent corrosion resistance. Surf Coat Technol 276 (2015) 341-348. https://doi.org/https://doi.org/10.1016/j.surfcoat.2015.07.002

    Article  CAS  Google Scholar 

  11. Lee S J and Kim S J, Essential anti-corrosive behavior of anodized Al alloy by applied current density. Appl Surf Sci 481 (2019) 637-641. https://doi.org/https://doi.org/10.1016/j.apsusc.2019.03.155

    Article  CAS  Google Scholar 

  12. Cruz M and Rodil S E, Improving the corrosion resistance of aluminum alloy (AA7075) using amorphous chromium oxide coatings. Mater Lett 278 (2020) 128459. https://doi.org/https://doi.org/10.1016/j.matlet.2020.128459

    Article  CAS  Google Scholar 

  13. Zhang B B, Guan F, Zhao X, Zhang Y M, Li Y T, Duan J Z and Hou B R, Micro-nano textured superhydrophobic 5083 aluminum alloy as a barrier against marine corrosion and sulfate-reducing bacteria adhesion. J Taiwan Inst Chem Eng 97 (2019) 433-440. https://doi.org/https://doi.org/10.1016/j.jtice.2019.01.031

    Article  CAS  Google Scholar 

  14. Zhang L L, Wang J W, Zhou J X, Zhuang H H, Wu J H, Ma B C and Tang S Q, Enhanced corrosion resistance of 6063 aluminum in surface modification using γ-aminopropyl triethoxysilane(Book Chapter). Lecture Notes in Mechanical Engineering (2018) 21–27. https://doi.org/10.1007/978-981-13-0107-0-3

  15. Chernyshovm N S, Kuznetsov Yu A, Markov M A, Krasikov A V and Bykova A D, Corrosion Tests of Oxide-Ceramic Coatings Formed by Microarc Oxidation. Refract Ind Ceram 61 (2020) 220-223. https://doi.org/https://doi.org/10.1007/s11148-020-00460-w

    Article  CAS  Google Scholar 

  16. Arbuzova S S, Butyagin P I, Bol’shanin A V, Kondratenko A I and Vorob’ev A V, Microarc Oxidation of Metal Surfaces: Coating Properties and Applications. Russ Phys J 62 (2020) 2086-2091. https://doi.org/https://doi.org/10.1007/s11182-020-01950-7

    Article  CAS  Google Scholar 

  17. Markov M A, Farmakovskii B V, Krasikov A V, Bykova A D, Perevislov S N and Belyakov A N, Application Method for Protective and Electrical Insulating Ceramic Coatings by Microarc Oxidation Under Excess Pressure Conditions. Refract Ind Ceram 60 (2019) 268-270. https://doi.org/https://doi.org/10.1007/s11148-019-00350-w

    Article  Google Scholar 

  18. Qin D C, Xu G Y, Yang Y and Chen S, Multiphase Ceramic Coatings with High Hardness and Wear Resistance on 5052 Aluminum Alloy by a Microarc Oxidation Method(Article). ACS Sustain Chem Eng 6 (2018) 2431-2437. https://doi.org/https://doi.org/10.1021/acssuschemeng.7b03883

    Article  CAS  Google Scholar 

  19. Null, Effects of microarc oxidation treatment on mechanical and wear properties of Ti-Nb alloys. Journal of Functional Materials / Gongneng Cailiao 52 (2021) 188–213. https://doi.org/10.3969/j.issn.1001-9731.2021.03.029

  20. Sun H O, Li L C, Wang Z Y, Liu B, Wang M and Yu Y L, Corrosion Behaviors of Microarc Oxidation Coating and Anodic Oxidation on 5083 Aluminum Alloy. Journal of Chemistry 2020 (2020). https://doi.org/10.1155/2020/6082812

  21. Li Y H, Zhao Y and Li B Y, Corrosion Resistance of Al2O3-ZrO2 Composite Coating by Microarc Oxidation on 2A12 Aluminum Alloy. Manufacturing Process Technology Pts 1-5 189-193 (2011) 672. https://doi.org/https://doi.org/10.4028/www.scientific.net/AMR.189-193.672

    CAS  Google Scholar 

  22. Krishtal M M, Ivashin P V, Yasnikov I S and Polunin A V, Effect of Nanosize SiO2 Particles Added into Electrolyte on the Composition and Morphology of Oxide Layers Formed in Alloy AK6M2 Under Microarc Oxidizing(Article). Met Sci Heat Treat 57 (2015) 428-435. https://doi.org/https://doi.org/10.1007/s11041-015-9900-8

    Article  CAS  Google Scholar 

  23. Ghorbanian B, Tajally M and Khoie S M M, Corrosion behavior of MoS2-incorporated PEO coatings prepared on Al alloy. Surf Innov 8 (2020) 252-262. https://doi.org/https://doi.org/10.1680/jsuin.19.00065

    Article  Google Scholar 

  24. Liu W Y, Pu Y, Liao H C, Lin Y H and He W Y, Corrosion and Wear Behavior of PEO Coatings on D16T Aluminum Alloy with Different Concentrations of Graphene. Coatings 10 (2020) 249. https://doi.org/https://doi.org/10.3390/coatings10030249

    Article  CAS  Google Scholar 

  25. Zhao X, Liu J L, Zhu J F, Lu B, Jiao Y H, Wang J H and He P, Preparation and characterization of melamine-resin/organosilicon/Na+-montmorillonite composite coatings on the surfaces of micro-arc oxidation of aluminum alloy. Prog Org Coat 133 (2019) 249-254. https://doi.org/https://doi.org/10.1016/j.porgcoat.2019.04.048

    Article  CAS  Google Scholar 

  26. Li J, Song R G, Qi X, Wang C and Jiang B, Effects of polyvinylidene fluoride sealing on micro-arc oxidation coating of 7075 aluminum alloy. Anti-Corrosion Methods and Materials 69 (2022) 1-8. https://doi.org/https://doi.org/10.1108/ACMM-04-2021-2478

    Article  CAS  Google Scholar 

  27. Ma C S, Cheng D, Zhu X H, Yan Z J, Fu J G, Yu J, Liu Z, Yu G Y and Zheng S B, Investigation of a self-lubricating coating for diesel engine pistons, as produced by combined microarc oxidation and electrophoresis. Wear 394 (2018) 109-112. https://doi.org/https://doi.org/10.1016/j.wear.2017.10.012

    Article  CAS  Google Scholar 

  28. Arunnellaiappan T, Ashfaq M, Krishna L R and Rameshbabu N, Fabrication of corrosion-resistant Al2O3–CeO2 composite coating on AA7075 via plasma electrolytic oxidation coupled with electrophoretic deposition. Ceram Int 42 (2016) 5897-5905. https://doi.org/https://doi.org/10.1016/j.ceramint.2015.12.136

    Article  CAS  Google Scholar 

  29. Bouali A C, Straumal E A, Serdechnova M, Wieland D C F, Starykevich M, Blawert C, Hammel J U, Lermontov S A, Ferreira M G S and Zheludkevich M L, Layered double hydroxide based active corrosion protective sealing of plasma electrolytic oxidation/sol-gel composite coating on AA2024. Appl Surf Sci 494 (2019) 829-840. https://doi.org/https://doi.org/10.1016/j.apsusc.2019.07.117

    Article  CAS  Google Scholar 

  30. Gu Y H and Zheng X H, Probing Local Corrosion Performance of Sol-Gel/MAO Composite Coating on Mg Alloy Using Svet and Leis. ECS Meeting Abstracts (2018) 1045. https://doi.org/10.1149/MA2018-01/14/1045

  31. Li B B, Yang T, Sun R G and Ma P, Biological and antibacterial properties of composite coatings on titanium surfaces modified by microarc oxidation and sol-gel processing. Dent Mater J 40 (2021) 455-463. https://doi.org/https://doi.org/10.4012/dmj.2020-034

    Article  CAS  Google Scholar 

  32. Chen X W, Hu J, Zhang D F, Ren P, Liao D D, Xu R S and Jiang X, High-temperature oxidation resistance and antifailure mechanism of MAO-SG composite coating on TC4 titanium alloy. Int. J Appl Ceram Technol 19 (2022) 533-544. https://doi.org/https://doi.org/10.1111/ijac.13912

    Article  CAS  Google Scholar 

  33. Shokouhfar M and Allahkaram S R, Effect of incorporation of nanoparticles with different composition on wear and corrosion behavior of ceramic coatings developed on pure titanium by micro arc oxidation, Surf Coat Tech 309 (2017) 767-778. https://doi.org/https://doi.org/10.1016/j.surfcoat.2016.10.089.

    Article  CAS  Google Scholar 

  34. Liu W Y, Liu Y, Lin Y H, Zhang Z, Feng S B, Talha M, Shi Y S and Shi T H, Effects of graphene on structure and corrosion resistance of plasma electrolytic oxidation coatings formed on D16T Al alloy. Appl Surf Sci 475 (2019) 645-659. https://doi.org/https://doi.org/10.1016/j.apsusc.2018.12.233

    Article  CAS  Google Scholar 

  35. Erdil M and Aydın F, Influence of graphene particles on the wear and corrosion performance of MAO produced AZ31 alloy. Fullerenes Nanotubes and Carbon Nanostructures (2021) 1–11. https://doi.org/10.1080/1536383x.2021.1925252

  36. Chen Q Z, Jiang Z Q, Tang S G, Dong W B, Tong Q and Li W Z, Influence of graphene particles on the micro-arc oxidation behaviors of 6063 aluminum alloy and the coating properties. Appl Surf Sci 423 (2017) 939-950. https://doi.org/https://doi.org/10.1016/j.apsusc.2017.06.202

    Article  CAS  Google Scholar 

  37. Zong Y, Song R G, Hua T S, Cai S W and Wang C, Effects of graphene additive on microstructure and properties of MAO ceramic coatings formed on AA7050. Mater Res Express 6 (2019) 056558. https://doi.org/https://doi.org/10.1088/2053-1591/ab0779

    Article  CAS  Google Scholar 

  38. Chen X W, Jiang X, Zhang D F, Zhao P F, Chen X P, Liao D D and Shi T H, Preparation of TiO2/(PTFE+Graphite) Micro-arc Oxidation Composite Coatings by Two-step Method and Their Tribological Behavior. Surface Technology 47 (2018) 131–138. https://doi.org/10.16490/j.cnki.issn.1001-3660.2018.10.017

  39. Sun L, Ma Y, An L Y, Wang X P and Gao W, Comparative Study on Anti-corrosion Electrochemical Response of Micro-arc Oxidation Coatings with Different Thicknesses under High and Low Voltage, Surface Technology 50 (2021) 366-374

    Google Scholar 

Download references

Acknowledgements

The author (Dr. Chen) is thankful to the National Natural Science Foundation of China (No 51774249) and the Open Fund (PLN2021-22) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University) for carrying out this research investigation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X.W., Cai, L.P., Zhang, D.F. et al. Microstructure and Corrosion Behavior of MAO-SG Composite Coating on 7075 Aluminum Alloy. Trans Indian Inst Met 75, 2931–2938 (2022). https://doi.org/10.1007/s12666-022-02673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02673-8

Keywords

Navigation