Skip to main content
Log in

Effect of Heat Treatment Temperature on Microstructure and Properties of FeCoNiCuTi High–Entropy Alloy

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present work, FeCoNiCuTi high-entropy alloy (HEA) was heat-treated at different temperatures. After heat treatment at different temperatures, the crystal structure maintained its FCC + Laves phase structure. The saturation magnetization increased by 56% to 53.8 emu·g−1, and the coercivity did not change. At 950 °C, the maximum strain value was 12.4%, which was approximately 4 times that of the as-cast alloy. The magnetic and mechanical properties of the FeCoNiCuTi HEA were much better after heat treatment. The FeCoNiCuTi HEA had very good thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yeh,J.W.;Chen,S.K.;Lin,S.J.;Gan,J.Y.;Chin,T.S.;Shun,T.T.;Tsau,C.H.;Chang,S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials 2004, 6, 299-303.

    Article  CAS  Google Scholar 

  2. Cantor,B.;Chang,I.T.H.;Knight,P.;Vincent,A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering:A 2004, 375-377, 213-218.

    Article  Google Scholar 

  3. Zhang,Y.;Zhou,Y.J.;Lin,J.P.;Chen,G.L.;Liaw,P.K. Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials 2008, 10(6), 534-538.

    Article  CAS  Google Scholar 

  4. Zhang,Y.;Zuo,T.T.;Tang,Z.;Gao,M.C.;Dahmen,K.A.;Liaw,P.K.;Lu,Z.P. Microstructures and properties of high-entropy alloys. Progress in Materials Science 2014, 61, 1-93.

    Article  Google Scholar 

  5. Yeh,J.W. Recent progress in high-entropy alloys. Annales de Chimie Science des Materiaux 2006, 31(6), 633-648.

    Article  CAS  Google Scholar 

  6. Qu,H.Z.;Gong,M.L.;Liu,F.F.;Gao,B.Y.;Bai,J.;Gao,Q.Z.;Li,S. Microstructure, mechanical properties and magnetic properties of FeCoNiCuTiSix high-entropy alloys. Science China Technological Sciences 2019, 63(3), 459-466.

    Article  Google Scholar 

  7. Wu,Z.;Bei,H.;Pharr,G.M.;George,E.P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Materialia 2014, 81, 428-441.

    Article  CAS  Google Scholar 

  8. Li,Z.Y.;Fu,L.M.;Peng,J.;Zheng,H.;Ji,X.B.;Sun,Y.L.;Ma,S.;Shan,A.D. Improving mechanical properties of an FCC high-entropy alloy by γ′ and B2 precipitates strengthening. Materials Characterization 2020, 159, 109989.

    Article  CAS  Google Scholar 

  9. Singh,A.K.;Kumar,N.;Dwivedi,A.;Subramaniam,A. A geometrical parameter for the formation of disordered solid solutions in multi-component alloys. Intermetallics 2014, 53, 112-119.

    Article  CAS  Google Scholar 

  10. Gali,A.;George,E.P. Tensile properties of high- and medium-entropy alloys. Intermetallics 2013,39, 74-78.

    Article  CAS  Google Scholar 

  11. Miracle,D.B.;Senkov,O.N. A critical review of high entropy alloys and related concepts. Acta Materialia 2017, 122, 448-511.

    Article  CAS  Google Scholar 

  12. Wu,B.;Xie,Z.;Huang,J.C.;Lin,J.W.;Yang,Y.X.;Jiang,L.Q.;Huang,J.L.;Ye,G.X.;Zhao,C.F.;Yang,S.J.;Sa,B.S. Microstructures and thermodynamic properties of high-entropy alloys CoCrCuFeNi. Intermetallics 2018, 93, 40-46.

    Article  CAS  Google Scholar 

  13. Gao,Q.Z.;Liu,Z.Y.;Li,H.J.;Zhang,H.L.;Jiang,C.C.;Hao,A.M.;Qu,F.;Lin,X.P. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling. Journal of Materials Science & Technology. 2021, 68, 91-102.

    Article  CAS  Google Scholar 

  14. Liu,H.;Liu,J.;Li,X.;Chen,P.J.;Yang,H.F.;Hao,J.B. Effect of heat treatment on phase stability and wear behavior of laser clad AlCoCrFeNiTi0.8 high-entropy alloy coatings. Surface and Coatings Technology 2020, 392, 125758.

    Article  CAS  Google Scholar 

  15. Park,J.M.;Moon,J.;Bae,J.W.;Jung,J.;Lee,S.;Kim,H.S. Effect of annealing heat treatment on microstructural evolution and tensile behavior of Al0.5CoCrFeMnNi high-entropy alloy. Materials Science and Engineering:A 2018,728,251-258.

    Article  CAS  Google Scholar 

  16. Stepanov,N.D.;Yurchenko,N.Y.,Zherebtsov,S.V.,Tikhonovsky,M.A.,Salishchev,G.A. Aging behavior of the HfNbTaTiZr high entropy alloy. Materials Letters 2018, 211, 87-90.

    Article  CAS  Google Scholar 

  17. Munitz,A.;Kaufman,M.J.;Nahmany,M.;Derimow,N.;Abbaschian,R. Microstructure and mechanical properties of heat treated Al1.25CoCrCuFeNi high entropy alloys. Materials Science and Engineering:A 2018,714,146-159.

    Article  Google Scholar 

  18. Pandey,P.;Kashyap,S.;Palanisamy,D.;Sharma,A.;Chattopadhyay,K. On the high temperature coarsening kinetics of γ′ precipitates in a high strength Co37.6Ni35.4Al9.9Mo4.9Cr5.9Ta2.8Ti3.5 fcc-based high entropy alloy. Acta Materialia 2019,177,82-95.

    Article  CAS  Google Scholar 

  19. Yu,P.F.;Cheng,H.;Zhang,L.J.;Zhang,H.;Jing,Q.;Ma,M.Z.;Liaw,P.K.;Li,G.;Liu,R.P. Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy. Materials Science and Engineering:A 2016, 655, 283-291.

    Article  CAS  Google Scholar 

  20. Munitz,A.;Salhov,S.;Hayun,S.;Frage,N. Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. Journal of Alloys and Compounds 2016,683,221-230.

    Article  CAS  Google Scholar 

  21. Liang,J.T.;Cheng,K.C.;Chen,S.H. Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders. Journal of Alloys and Compounds 2019,803,484-490.

    Article  CAS  Google Scholar 

  22. Sistla,H.R.;Newkirk,J.W.;Liou,F.F. Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2−x (x=0.3, 1) high entropy alloys. Materials & Design 2015,81,113-121.

    Article  CAS  Google Scholar 

  23. Kim,D.G.;Jo,Y.H.;Park,J.M.;Choi,W.M.;Kim,H.S.;Lee,B.J.;Sohn,S.S.;Lee,S. Effects of annealing temperature on microstructures and tensile properties of a single FCC phase CoCuMnNi high-entropy alloy. Journal of Alloys and Compounds 2020, 812, 152111.

    Article  CAS  Google Scholar 

  24. Zhang,C.;Wu,G.F.;Dai,P.Q. Phase Transformation and aging behavior of Al0.5CoCrFeNiSi0.2 high-entropy alloy. Journal of Materials Engineering and Performance 2015, 24(5), 1918-1925.

    Article  CAS  Google Scholar 

  25. Jiang,L.;Jiang,H.;Lu,Y.;Wang,T.;Cao,Z.;Li,T. Mechanical properties improvement of AlArFeNi2Ti0.5 high entropy alloy through annealing design and its relationship with its particle-reinforced microstructures. Journal of Materials Science & Technology 2015, 31(4), 397-402.

    Article  CAS  Google Scholar 

  26. Tong,Z.P.;Ren,X.;Jiao,J.F.;Zhou,W.F.;Ren,Y.P..;Ye,Y.X.;Enoch,A.L.;Gu,J.Y. Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: effect of heat treatment on microstructure, residual stress and mechanical property. Journal of Alloys and Compounds 2019.

  27. Malatji,N.;Lengopeng,T.;Pityana,S.;Popoola,A.P.I. Effect of heat treatment on the microstructure, microhardness, and wear characteristics of AlCrFeCuNi high-entropy alloy. The International Journal of Advanced Manufacturing Technology 2020, 111(7), 2021-2029.

    Article  Google Scholar 

  28. Fazakas,É.;Zadorozhnyy,V.;Louzguine-Luzgin,D.V. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x= 15, 20) high-entropy alloys. Applied Surface Science 2015, 358, 549-555.

    Article  CAS  Google Scholar 

  29. Shun,T.T.;Hung,C.H.;Lee,C.F. The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700°C. Journal of Alloys and Compounds 2010, 495, 55-58.

    Article  CAS  Google Scholar 

  30. Wang,F.J.;Zhang,Y. Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy. Materials Science and Engineering: A 2008, 496, 214-216.

    Article  Google Scholar 

  31. Beyramali,K.M.;Asle,Z.M.;Lekakh,S. Investigating phase formations in cast AlFeCoNiCu high entropy alloys by combination of computational modeling and experiments. Materials & Design 2017, 127, 224-232.

    Article  Google Scholar 

  32. Krapivka,N.;Firstov,S.;Karpets,M. et al. Features of phase and structure formation in high-entropy alloys of the AlCrFeCoNiCux system (x= 0, 0.5, 1.0, 2.0, 3.0). The Physics of Metals and Metallography 2015, 116, 467-474.

    Article  Google Scholar 

  33. Yurchenko,N.;Stepanov,N.;Salishchev,G. Laves-phase formation criterion for high-entropy alloys. Materials Science and Technology 2016, 33(1),17-22.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos: 51771044 and 51871042); Scientific and Technological Research Projects of Colleges and Universities in Hebei Province (No. ZD2015213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaizhi Qu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, M., Qu, H., Xu, C. et al. Effect of Heat Treatment Temperature on Microstructure and Properties of FeCoNiCuTi High–Entropy Alloy. Trans Indian Inst Met 75, 1951–1956 (2022). https://doi.org/10.1007/s12666-022-02665-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02665-8

Keywords

Navigation