Skip to main content
Log in

Chilled Temperature Induced Unidirectional Sliding Characteristics of 2D Woven Carbon Fiber Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Despite exhibiting outstanding refractory properties and high hardness, the properties of carbon–carbon (C/C) composites are greatly influenced by the surrounding environment. The tribological behaviour is not an exception considering environmental effect. Although the general tribological use of C/C composites (i.e., brake disks of aircrafts and high speed cars) requires excellent high temperature characteristics, the tribological elements also have to pass through freezing environment. Thus, present article focuses on the investigation of tribological behaviour of C/C composites in the freezing environment. Laminate orientation, surface conformity, load, and sliding velocity were varied. The load was varied ranging 20 N, 30 N, 40 N, 50 N and 60 N, and the sliding velocities were varied ranging 1 m/s, 1.5 m/s, 2 m/s, 2.5 m/s and 3 m/s. The results showed that tribological behaviour of C/C composites changed with load, sliding velocity, laminate orientation, and surface conformity. Scanning electron microscopic analysis of worn surfaces showed that the mechanism and synergism between friction film formation, adsorption, and desorption of water molecules, wear debris morphology described the tribological behaviour of C/C composites. Coefficient of friction of C/C composites was lower, and wear rate was higher in non-conformal Hertzian contacts due to very high and localized induced stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen Z, Li H, Li K, Shen Q, Fu Q (2014) Influence of grain size on wear behavior of SiC coating for carbon/carbon composites at elevated temperatures. Materials & Design 53:412-418.

    Article  CAS  Google Scholar 

  2. Li K-z, Wang J, Ren X-b, Li H-j, Li W, Li Z-q (2013) The preparation and mechanical properties of carbon–carbon/lithium–aluminum–silicate composite joints. Materials & Design 44:346-353.

    Article  CAS  Google Scholar 

  3. Kumar P, Srivastava VK (2016) A Review on Wear and Friction Performance of Carbon–Carbon Composites at High Temperature. International Journal of Applied Ceramic Technology 13:702-710.

    Article  CAS  Google Scholar 

  4. Manocha LM (2003) High performance carbon-carbon composites. Sadhana 28:349-358.

    Article  CAS  Google Scholar 

  5. Xiong X, Wang Y-l, Chen Z-k, Li G-d (2009) Mechanical properties and fracture behaviors of C/C composites with PyC/TaC/PyC, PyC/SiC/TaC/PyC multi-interlayers. Solid State Sciences 11:1386-1392.

    Article  CAS  Google Scholar 

  6. Xu X, Fan S, Zhang L, Du Y, Cheng L (2014) Tribological behavior of three-dimensional needled carbon/silicon carbide and carbon/carbon brake pair. Tribology International 77:7-14.

    Article  CAS  Google Scholar 

  7. Ozcan S, Filip P (2013) Wear of carbon fiber reinforced carbon matrix composites: Study of abrasive, oxidative wear and influence of humidity. Carbon 62:240-247.

    Article  CAS  Google Scholar 

  8. Chen JD, Chern Lin JH, Ju CP (1996) Effect of humidity on the tribological behavior of carbon-carbon composites. Wear 193:38-47.

    Article  CAS  Google Scholar 

  9. Yen BK, Ishihara T, Yamamoto I (1997) Influence of environment and temperature on “dusting” wear transitions of carbon–carbon composites. Journal of Materials Science 32:681-686.

    Article  CAS  Google Scholar 

  10. Yu S, Zhang F, Xiong X, Li Y, Tang N, Koizumi Y, Chiba A (2013) Tribological properties of carbon/carbon composites with various pyrolytic carbon microstructures. Wear 304:103-108.

    Article  CAS  Google Scholar 

  11. Kumar P, Srivastava VK (2016) Tribological behaviour of C/C–SiC composites—A review. Journal of Advanced Ceramics 5:1-12.

    Article  Google Scholar 

  12. Feng T, Li H-J, Shi X-H, Yang X, Wang S-L (2013) Oxidation and ablation resistance of ZrB2–SiC–Si/B-modified SiC coating for carbon/carbon composites. Corrosion Science 67:292-297.

    Article  CAS  Google Scholar 

  13. Wang K-T, Cao L-Y, Huang J-F, Fei J (2013) A mullite/SiC oxidation protective coating for carbon/carbon composites. Journal of the European Ceramic Society 33:191-198.

    Article  Google Scholar 

  14. Fu Q-G, Li H-J, Wang Y-J, Li K-Z, Shi X-H (2009) B2O3 modified SiC–MoSi2 oxidation resistant coating for carbon/carbon composites by a two-step pack cementation. Corrosion Science 51:2450-2454.

    Article  CAS  Google Scholar 

  15. Fu Q-G, Li H-J, Li K-Z, Tong K (2009) A Si–Mo–W Coating to Protect SiC-Coated Carbon/Carbon Composites Against Oxidation. Journal of the American Ceramic Society 92:2132-2135.

    Article  CAS  Google Scholar 

  16. Shin H-k, Lee H-B, Kim K-S (2001) Tribological properties of pitch-based 2-D carbon–carbon composites. Carbon 39:959-970.

    Article  CAS  Google Scholar 

  17. Xiong X, Huang B-y, Li J-h, Xu H-j (2006) Friction behaviors of carbon/carbon composites with different pyrolytic carbon textures. Carbon 44:463-467.

    Article  CAS  Google Scholar 

  18. Srivastava V (2003) Wear Behaviour of C/C–SiC Composites Sliding against High-Cr Steel Discs. Zeitschrift für Metallkunde 94:458-462.

    Article  CAS  Google Scholar 

  19. Deng H, Li K, Li H, Wang P, Xie J, Zhang L (2010) Effect of brake pressure and brake speed on the tribological properties of carbon/carbon composites with different pyrocarbon textures. Wear 270:95-103.

    Article  CAS  Google Scholar 

  20. Fernández-González S, Sánchez JL, Gascón E, López L, García-Ortega E, Merino A (2014) The Scientific World Journal 2014.

  21. Potapczuk MG (2013) Aircraft icing research at NASA Glenn research center. Journal of Aerospace Engineering 26:260-276.

    Article  Google Scholar 

  22. Oliver MJ, Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center, 6th AIAA Atmospheric and Space Environments Conferenceed., American Institute of Aeronautics and Astronautics, 2014

  23. Wang P, Zhang H, Yin J, Xiong X, Deng C (2017) Effects of fibre orientation on wear behavior of copper mesh modified-carbon/carbon composite under electric current. Tribology International 116:310-319.

    Article  CAS  Google Scholar 

  24. Wang H, Wang R, Wang C, Li M, Zhu Y (2017) Influence of fiber orientation on the tribological properties of unidirectional carbon fiber reinforced epoxy composites corroded by 10 wt% sulfuric acid solution. Journal of Materials Research 32:801-809.

    Article  CAS  Google Scholar 

  25. Wang Y, Wu H (2012) Microstructure of friction surface developed on carbon fibre reinforced carbon–silicon carbide (Cf/C–SiC). Journal of the European Ceramic Society 32:3509-3519.

    Article  CAS  Google Scholar 

  26. Smerdova O, Cayer-Barrioz J, Le Bot A, Sarbaev B (2012) Analytical Model and Experimental Validation of Friction Laws for Composites Under Low Loads. Tribology Letters 46:263-272.

    Article  Google Scholar 

  27. Cai Y, Xu Y, Li B, Fan S, Zhang L, Cheng L, Yu L (2009) Low-cost preparation and frictional behaviour of a three-dimensional needled carbon/silicon carbide composite. Journal of the European Ceramic Society 29:497-503.

    Article  CAS  Google Scholar 

  28. Grujicic M, Zhao CL, Dusel EC, Morgan DR, Miller RS, Beasley DE (2006) Computational analysis of the thermal conductivity of the carbon–carbon composite materials. Journal of Materials Science 41:8244-8256.

    Article  CAS  Google Scholar 

  29. Saruhan B, Göring J, Schneider H, Pleger R, Braue W, Ceramic materials and ceramic matrix composites, Advanced Aerospace Materialsed., Springer, 1992, p 153–218

  30. Lee K, Lin JC, Ju C-P (2003) Microstructure study of PAN-pitch carbon–carbon composite lubricative film. Materials chemistry and physics 78:760-766.

    Article  CAS  Google Scholar 

  31. Hutton TJ, Johnson D, McEnaney B (2001) Effects of fibre orientation on the tribology of a model carbon–carbon composite. Wear 249:647-655.

    Article  CAS  Google Scholar 

  32. Awasthi S, Wood JL, Carbon/carbon composite materials for aircraft brakes, Proceedings of the 12th Annual Conference on Composites and Advanced Ceramic Materials: Ceramic Engineering and Science Proceedings, 1988, Wiley Online Library, pp 553–559

  33. Kumar P, Srivastava VK (2019) Reciprocating sliding tribology of brake oil treated carbon fiber reinforced ceramic matrix composites. Transactions of Nonferrous Metals Society of China 29:1903-1913.

    Article  CAS  Google Scholar 

  34. Xiong X, Li J-h, Huang B-y (2007) Impact of brake pressure on the friction and wear of carbon/carbon composites. Carbon 45:2692-2694.

    Article  CAS  Google Scholar 

  35. Blanco C, Bermejo J, Marsh H, Menendez R (1997) Chemical and physical properties of carbon as related to brake performance. Wear 213:1-12.

    Article  CAS  Google Scholar 

  36. Tsutsumi K, Ishida S, Shibata K (1990) Determination of the surface free energy of modified carbon fibers and its relation to the work of adhesion. Colloid and Polymer Science 268:31-37.

    Article  CAS  Google Scholar 

  37. Sheehan J, Buesking K, Sullivan B (1994) Carbon-carbon composites. Annual Review of Materials Science 24:19-44.

    Article  CAS  Google Scholar 

  38. Ozcan S, Tezcan J, Filip P (2009) Microstructure and elastic properties of individual components of C/C composites. Carbon 47:3403-3414.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CIFC, IIT (BHU) Varanasi, India, for providing facility for scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parshant Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Srivastava, V.K. Chilled Temperature Induced Unidirectional Sliding Characteristics of 2D Woven Carbon Fiber Composites. Trans Indian Inst Met 75, 2701–2711 (2022). https://doi.org/10.1007/s12666-022-02642-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02642-1

Keywords

Navigation