Skip to main content
Log in

Synthesis and Microstructure Influenced Antimicrobial Properties of Dispersed Nanoporous Gold Rods

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Highly dispersed nanoporous Au rods have been prepared from arc melted Ag70Au30 alloy using site-selective electrochemical potential controlled dealloying method followed by Au anodizing process. The microstructure studies using scanning electron microscope and atomic force microscope indicate that selective removal of Ag from the Ag70Au30, precursor results in the formation of bi-continuous three-dimensional network structures with uniform pores and Au ligaments diameter of 6 nm. The noticeable features present in the optical studies of highly dispersed nanoporous Au rods using UV—Vis spectroscopy are two absorption bands peaking at 477 and 546 nm with overlapping of these bands at 520 nm. The antimicrobial testing by Agar well diffusion method reveals that the dispersed porous Au rods have greater inhibitory effect against both Gram-positive and Gram-negative bacterial strains. The results obtained provide opportunities to design and manipulate nanoporous Au rods at atomic level to achieve antimicrobial efficacy for biomedical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Erkin Seker, Yevgeny Berdichevsky, Kevin J. Staley, Martin L. Yarmush, Microfabrication-Compatible Nanoporous Gold Foams as Biomaterials for Drug Delivery, Adv. Healthcare Mater. 1, 172–176.(2012)

    Article  CAS  Google Scholar 

  2. V. Garcia-Gradilla, S. Sattayasamitsathit, F. Soto, F. Kuralay,C. Yardımcı, D. Wiitala M. Galarnyk, J. Wang, Ultrasound-propelled Nanoporous Gold Wire for Efficient Drug Loading and Release, Small 10 4154 – 4159 (2014).

    CAS  Google Scholar 

  3. H. Min, N. Sullivan, D. Allarab, S. Tadigadapa, Nanoporous Gold: A high sensitivity and specificity biosensing substrate, Procedia Engineering, 25 1469–1472 (201l).

    Article  CAS  Google Scholar 

  4. P. Daggumati, O. Kurtulus, C. A. R. Chapman, D. Dimlioglu, E. Seker, Microfabrication of Nanoporous Gold Patterns for Cell-material Interaction Studies, JOVE Journal of Visualized Experiments 77: e50678 (1–7) (2013).

    Google Scholar 

  5. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in de-alloying, Nature 410, 450 - 453 (2002).

    Article  Google Scholar 

  6. J. Weissmüller, R.C. Newman, H.-J. Jin, A.M. Hodge, J.W. Kysar, Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties, MRS Bull.. 34, 577 - 586 (2009).

    Article  Google Scholar 

  7. J. Biener, A. Wittstock, L. A. Zepeda-Ruiz, M. M. Biener, V. Zielasek, D. Kramer, R. N. Viswanath, J. Weissmüller, M. Bäumer, A. V. Hamza, Surface-chemistry-driven actuation in nanoporous gold, Nat. Mater. 8, 47–51 (2009).

    Article  CAS  Google Scholar 

  8. R. N. Viswanath, V. A. Chirayath, R. Rajaraman, G. Amarendra, C. S. Sundar, Ligament coarsening in nanoporous gold: Insights from positron annihilation studyApplied Physics Letters 102, 253101(1-4) (2013).

    Article  Google Scholar 

  9. N. Miyazawa, M. Hakamada, M. Mabuchi, Antimicrobial mechanisms due to hyperpolarization induced by nanoporous Au, Scientific Reports,8, 3870 (1-5) (2018).

    Google Scholar 

  10. K. Gold, B. Slay, M. Knackstedt, Akhilesh K. Gaharwar, Antimicrobial Activity of Metal and Metal‐Oxide Based Nanoparticles, Adv. Therap.1, 1700033 (1-15) (2018).

    Article  Google Scholar 

  11. Yu -Ying Yu, Ser - Sing Chang, Chien - Liang Lee, C. R. Chris Wang, Gold Nanorods: Electrochemical Synthesis and Optical Properties. The Journal of Physical Chemistry B 101,6661-6664(1997).

    Article  Google Scholar 

  12. R. N. Viswanath, S. R. Polaki, R. Rajaraman, S. Abhaya, V. A. Chirayath, G. Amarendra, C. S. Sundar, On the scaling behaviour of hardness with ligament diameter of nanoporous Au: Constrained motion of dislocation along the ligaments. Appl. Phys. Lett. 104 233108 (1-4) (2014).

    Article  Google Scholar 

  13. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying, Nature,410, 450-453 (2001).

    Article  CAS  Google Scholar 

  14. S. Cherevko, A. A. Topalov, A. R. Zeradjanin, I. Katsounaros, K. J. J. Mayrhofer, Gold dissolution: towards understanding of noble metal corrosion, RSC Advances, 2013, 3: 16516 – 16527. http:// DOI: https://doi.org/10.1039/C3RA42684J

    Article  CAS  Google Scholar 

  15. M. Balouiri, M. Sadiki, S. K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: A review, J. Pharmaceutical Analysis 6, 71 – 79 (2016).

    Article  Google Scholar 

  16. C. Perez, M. Pauli, P. Bazerque, Acta Biologiae, An Antibiotic Assay by the Agar-Well Diffusion Method,” Acta Biologiae et Medecine Experimentalis15, 113-115 (1990).

    Google Scholar 

  17. Maher Obeidat, Mohamad Shatnawi, Mohammad Al-alawi, Enas Al-Zu`bi, Hanee Al-Dmoor, Maisa Al-Qudah, Jafar El-Qudah, Ismael Otri, Antimicrobial Activity of Crude Extracts of Plant Leaves, Research Journal of Microbiology7,59-67 (2012).

    Article  Google Scholar 

  18. H-J. Jin, S. Parida, D. Kramer, J. Weissmüller, Sign-Inverted surface stress - charge response in nanoporous Au, Surface Science602,3588-3594 (2008).

    Article  CAS  Google Scholar 

  19. B. E. Conway, Electrochemical oxide formation at noble metals as a surface chemical Process, Progress in Surface Science 49, 331-452 (1995).

    Article  CAS  Google Scholar 

  20. C. Lakshmanan, R.N. Viswanath, S.R. Polaki, R. Rajaraman, S. Dash, A.K. Tyagi, Surface area of nanoporous gold: Effect on temperature, Electochemica Acta 182, 565 -572 (2015).

    Article  CAS  Google Scholar 

  21. N. Huber, R. N. Viswanath, N. Mameka, J. Markmann, J. Weissmüller, Scaling laws of nanoporous metals under uniaxial compression, Acta Materialia 67 (252 - 265) (2014)

    Article  CAS  Google Scholar 

  22. D. Jalas, R. Canchi, A. Yu. Petrov, S. Lang, L. Shao, J. Weissmüller, M. Eich, Effective medium model for the spectral properties of nanoporous gold in the visible, Applied Physics Letters105, 241906 (1-5) (2014).

    Article  Google Scholar 

  23. S. Link, A.A. EI-Sayed, Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant – Additions and Corrections, J. Phys. Chm. B 109, 10531-10532. (2005).

    Article  CAS  Google Scholar 

  24. K. Zheng, M. I. Setyawati, D. T. Leong, J. Xie, Antimicrobial Silver nanomaterials, Coordination Chemistry Reviews 357, 1 – 17 (2018).

    Article  CAS  Google Scholar 

  25. Boyan Bonev, James Hooper, Judicaël Parisot, Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method, Journal of Antimicrobial Chemotherapy 61, 1295-1301 (2008).

    Article  CAS  Google Scholar 

  26. K. E. Cooper, D. Woodman, The diffusion of antiseptics through agar gels, with special reference to the agar cup assay method of estimating the activity of penicillin J. Pathol. Bacteriol. 58, 75 - 84 (1946).

    Article  CAS  Google Scholar 

  27. X. Li, S. M. Robinson, A. Gupta, K. Saha, Z. Jiang, D. F. Moyano, A, Sahar, M. A. Riley, V. M. Rotello, Functional Gold Nanoparticles as Potent Antimicrobial agents against Multi-drug, ACS NANO, 8 10682 – 10686 (2014).Resistant Bacteria.

    Article  CAS  Google Scholar 

  28. N. Miasawa, M. Hakamada, M. Mabuchi, Effect of nanoporous Au on ATP synthase, MRS Communications (2020) doi:https://doi.org/10.1557/mrc.2020.8.

    Article  Google Scholar 

  29. C. Lakshmanan, A. K. Behera, R.N. Viswanath, S. Amirthapandian,, R. Rajaraman, G. Amarendra, Microstructure Studies in nanoporousAu: Effects on electro-oxidation, Scripta Materialia 146, 68-72 (2018).

    Article  CAS  Google Scholar 

  30. J. Thiel, L. Pakstis, S. Buzby. M. Raffi, C. Ni., D. J. Pochan, S. I. Shah, Antibacterial Properties of Silver-doped titania, Small3, 799 - 803 (2007).

    Article  CAS  Google Scholar 

  31. J. A. Lemire, J. J. Harrison, R. J. Turner, Antimicobial activity of Metals: mechanisms, molecular targets and applications, Nature Reviews Microbiology 11, 371-384 (2013).

    Article  CAS  Google Scholar 

  32. S. Sharmin, Md. M. Rahaman, C. Sarkar, O. Atolani, M. T. Islam, O. S. Adeyemi, Nanoparticlesas antimicrobial and antiviral agents: A literature-based perspectivestudy, Heliyon, 7 e06456 (1-9) (2021).

    Article  Google Scholar 

  33. Y. N. Slavin, J. Asnis, U. O. Häfeli, H. Bach, Metal Nanoparticles: Understanding the mechanisms behind antibacterial activity, J. Nanotechnology 15 pp 1-20 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge gratefully to Vinayaka Mission’s Research Foundation (VMRF), Chennai 603 104 for their constant research support. We thank IGCAR, Kalpakkam and UGC-DAE CSR Kalpakkam for providing electrochemical workstation and SEM facilities, respectively. We are grateful to Armats Bioteck Ltd., Chennai for antimicrobial testing. The financial support rendered by VMRF under a seed money project VMRF/SeedMoney-Phase2/ /2020-10/AVIT-Kanchi/11 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Viswanath.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

NirmalaDevi, G., Viswanath, R.N., Suresh, G. et al. Synthesis and Microstructure Influenced Antimicrobial Properties of Dispersed Nanoporous Gold Rods. Trans Indian Inst Met 75, 2737–2747 (2022). https://doi.org/10.1007/s12666-022-02636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02636-z

Keywords

Navigation