Skip to main content
Log in

Study on Microstructure and Mechanical Properties of Aluminum–Copper Dissimilar Metals Joints by Nanosecond Laser Spiral Welding

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Aluminum–copper dissimilar metals were successfully welded by nanosecond laser and optical galvanometer scanning. The joint formation, microstructure characteristics, and mechanical properties under different lap forms were studied. The results showed that when the joint was Al (upper)/Cu (under), the metal on the aluminum side melted completely. Part of the aluminum intruded into the copper base material to form a “V”-shaped weld. When the joint was Cu (upper)/Al(under), the weld consisted of multiple "nail"-shaped welds. In the two overlapping forms, the welds were mainly composed of four structures: γ2-Cu9Al4 phase region, hypereutectic region, eutectic region, and hypoeutectic region. The weld penetration formed by the Cu/Al joint was greater than that of the Al/Cu weld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Joost W J, JOM 64 (2012) 1032. https://doi.org/10.1007/s11837-012-0424-z.

  2. Wang X, Gu C, Zheng Y, Shen Z, and Liu H, Mater Des 56 (2014) 26. https://doi.org/10.1016/j.matdes.2013.10.091.

  3. Panaskar N, and Terkar R, Mater Today Proc 4 (2017) 8387. https://doi.org/10.1016/j.matpr.2017.07.182.

  4. Choudhury T, Ghorai A, Medhi T, Acharya U, Roy B S, and Saha S C, Mater Today Proc (2020). https://doi.org/10.1016/j.matpr.2020.03.238.

  5. Solchenbach T, Plapper P, and Cai W, J Manuf Process 16 (2014) 183. https://doi.org/10.1016/j.jmapro.2013.12.002.

  6. Fujii H T, Endo H, Sato Y S, and Kokawa H, Mater Charact 139 (2018) 233–240. https://doi.org/10.1016/j.matchar.2018.03.010.

  7. Zhang Y, Li Y, Luo Z, Yuan T, Bi J, Wang Z M, Wang Z P, and Chao Y J, Mater Des 106 (2016) 235. https://doi.org/10.1016/j.matdes.2016.05.117.

  8. Kapil A, and Sharma A, J Clean Prod 100 (2015) 35. https://doi.org/10.1016/j.jclepro.2015.03.042.

  9. Lueg-Althoff J, Bellmann J, Hahn M, Schulze S, Gies S, Tekkaya A E, and Beyer E, J Mater Process Technol 279 (2020) 116562. https://doi.org/10.1016/j.jmatprotec.2019.116562.

  10. Thakare J G, Pandey C, Gupta A, Taraphdar P K, and Mahapatra M M, Fusion Eng Des 68 (2021) 112616. https://doi.org/10.1016/j.fusengdes.2021.112616.

  11. Sirohi S, Taraphdar P K, Dak G, Pandey C, Sharma SK, and Goyal A, Int J Press Vessel Pip 194 (2021) 104557. https://doi.org/10.1016/j.ijpvp.2021.104557.

  12. Kumar A, and Pandey C, Arch Civ Mech Eng 22 (2022) 20. https://doi.org/10.1007/s43452-021-00365-6.

  13. Kraetzsch M, Standfuss J, Klotzbach A, Kaspar J, Brenner B, and Beyer E, Phys Procedia 12 (2011) 142. https://doi.org/10.1016/j.phpro.2011.03.018.

  14. Mathivanan K, and Plapper P, Procedia Manuf. 36 (2019) 154. https://doi.org/10.1016/j.promfg.2019.08.021.

  15. Deng S, Wang H P, Lu F, Solomon J, and Carlson B E, Int J Heat Mass Transf 140 (2019) 280. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.009.

  16. Kumagai K, Kuwahara M, Yasuki T, and Koreishi N, SAE Int J Passeng Cars Mech Syst 9 (2016) 280. https://doi.org/10.4271/2016-01-1344.

  17. Zhu B, Zhen L, Xia H, Su J, Niu S, Wu L, Tan C, and Chen B, Opt Laser Technol 139 (2021) 106945. https://doi.org/10.1016/j.optlastec.2021.106945.

  18. Tao W, and Yang S, J Mater Process Technol 286 (2020) 116826. https://doi.org/10.1016/j.jmatprotec.2020.116826.

  19. Solchenbach T, and Plapper P, Opt Laser Technol 54 (2013) 249. https://doi.org/10.1016/j.optlastec.2013.06.003.

  20. Hou W, Ahmad Shah L H, Huang G, Shen Y, and Gerlich A, J Alloys Compd 825 (2020) 154045. https://doi.org/10.1016/j.jallcom.2020.154045.

  21. Mao Y, Ni Y, Xiao X, Qin D, and Fu L, J Manuf Process 60 (2020) 356. https://doi.org/10.1016/j.jmapro.2020.10.064.

  22. Kah P, Vimalraj C, Martikainen J, and Suoranta R, Int J Mech Mater Eng 10 (2015). https://doi.org/10.1186/s40712-015-0037-8.

  23. Spena P R, De Maddis M, and Lombardi F, Procedia Eng 109 (2015) 450. https://doi.org/10.1016/j.proeng.2015.06.262.

  24. Eslami P, and Taheri A K, Mater Lett 65 (2011) 1862. https://doi.org/10.1016/j.matlet.2011.03.053.

Download references

Acknowledgements

This research was supported by the Foundation of Natural Science Foundation of China (51905333, 51805316), Shanghai local colleges and universities capacity building special plan project (19030501300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peilei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Q., Zhang, P., Shi, H. et al. Study on Microstructure and Mechanical Properties of Aluminum–Copper Dissimilar Metals Joints by Nanosecond Laser Spiral Welding. Trans Indian Inst Met 75, 2517–2528 (2022). https://doi.org/10.1007/s12666-022-02623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02623-4

Keywords

Navigation