Skip to main content

Advertisement

Log in

Climate Change and Emission Reduction Pathways for a Large Capacity Coal-Based Steel Sector: Implementation Issues

  • Review Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Following the international climate change policy and the major use of coal-based blast furnace–basic oxygen furnace (BF–BOF) in the steel sector, with an average emission of 2.0 t CO2/t steel, alternative processing routes must be considered to reduce the emission intensities. An approach of progressive amalgamation with alternative gas and renewable energy-based processes is indicated for a coal-based sector. The approach also retains coal use for major production with technology changes like smelting reduction technology, HISARNA with carbon capture and storage, or top gas recycling blast furnace. Combining renewable energy-based ‘green electrolytic hydrogen’ processes with/without natural gas with existing coal-based processing is an important option in achieving global climate change targets for emission reduction. Capacity limitations of alternative processing routes and high green hydrogen costs are hurdles to overcome in progressive amalgamation. An approach to redesigning mixed circuits for minimizing sectoral emissions involving BF–BOF with available scrap is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2DS:

Two-Degree centigrade Scenario

45Q:

Internal Revenue Code of a tax credit incentivizing carbon capture and sequestration or utilization in the USA.

BAT:

Best Available Technology

BAU:

Business As Usual

CAGR:

Compounded Annual Growth Rate

CCS:

Carbon Capture and Storage

CCU:

Carbon Capture and Utilization

CCUS:

Carbon capture Utilization and Storage

DR:

Direct Reduction processes

DRI:

Direct Reduced Iron

DRI–EAF:

Direct Reduced Iron–Electric Arc Furnace process

ENERGION ZR:

HYL Direct Reduction Shaft furnace Technology jointly developed by Tenova and Danieli

EOR:

Enhanced Oil Recovery

EUA:

European Union Allowances

FINMET:

Fluidized bed iron ore reduction (VAI, Austria)

FIOR:

Fluidized bed Iron Ore Reduction ESSO Research, USA

FINEX:

A two-stage SR process incorporating fluid bed reduction and smelting

HISARNA:

High-intensity iron making (SR process)

HISMELT:

High-intensity smelting (SR process)

HOGANAS:

Coal-based solid-state ironmaking process in tunnel kiln

HYBRIT:

Hydrogen Breakthrough Ironmaking Technology

HYL, MIDREX:

Direct reduction gas-based shaft furnace technologies

IEAGHG:

International Energy Association Green House Gas Emission

INMETCO:

International Metals Reclamation Company, Inc

ITmk3:

Ironmaking Technology Marked three, third-generation ironmaking

MDEA:

Methyl Di-Ethanol Amine

MEA:

Mono-Ethanol Amine

MTPA:

Million Tons Per Annum

MXCOl:

Direct reduction with coal gasification

NDC:

Nationally Determined Contributions

PCI:

Pulverized Coal Injection

RHF:

Rotary Hearth Furnace

RK:

Rotary kiln

SALCOS:

Salzgitter Low CO2 Steelmaking

SR:

Smelting Reduction

TGR-BF:

Top Gas Recycling Blast Furnace

THM:

Metric Tons of Hot Metal

TPA:

Metric tons per annum

ULCOS:

Ultra-low CO2 Steelmaking

WSA:

World Steel Association

References

  1. IEA, Energy Technology Perspectives 2014, IEA, Paris. https://doi.org/10.1787/energy_tech-2014-en (2014).

  2. IEA, Energy Technology Perspectives 2017, IEA, Paris. https://www.iea.org/reports/energy-technology-perspectives-2017 (2017).

  3. European Commission, Climate Strategies and Targets. https://ec.europa.eu/clima/policies/strategies_en.

  4. Croezen H, and Korteland M, A Long-Term View of CO2 Efficient Manufacturing in the European Region, Report Delft, CE Delft (2010).

  5. IEA, CO2 Emissions from Fuel Combustion: Overview. https://stats2.digitalresources.jisc.ac.uk/metadata/IEA/co2/CO2%20Emissions_documentation_2020.pdf (2020).

  6. IEA, Energy Technology Perspectives 2020, OECD Publishing, Paris. https://doi.org/10.1787/d07136f0-en (2020).

  7. IEA, Key World Energy Statistics 2020, IEA, Paris. https://www.iea.org/reports/key-world-energy-statistics-2020 (2020).

  8. Holappa L, Metals 10 (2020) 1117. https://doi.org/10.3390/met10091117.

    Article  CAS  Google Scholar 

  9. UNEP Emissions Gap Report, Chapter 3. https://reliefweb.int/sites/reliefweb.int/files/resources/EGR2018_FullReport_EN.pdf (2018).

  10. Pei M, Petäjäniemi M, Regnell A, and Wijk O, Metals 10 (2020) 1. https://doi.org/10.3390/met10070972.

    Article  Google Scholar 

  11. UNFCC, United Nations Framework Convention on Climate Change. https://en.wikipedia.org/wiki/United_Nations_Framework_Convention_on_Climate_Change.

  12. Naito M, Takeda K, and Matsui Y, ISIJ Int 55 (2015) 7.

    Article  CAS  Google Scholar 

  13. Peacy J G, and Davenport W G, The Iron Blast Furnace: Theory and Practice, Pergamon Press, Oxford (1979), p. 251.

    Google Scholar 

  14. Biswas A K, Principles of Blast Furnace Ironmaking, SBA Publication, Kolkata (1984), p. 528.

    Google Scholar 

  15. Sahu R K, Roy S K, and Sen P K, Steel Res Int 86 (2015) 502.

    Article  CAS  Google Scholar 

  16. Roy, G G, EEPC, September 2020, The Magic of Iron Making. https://www.eepcindia.org/eepc-magazine/magazine.aspx?id=MAZ0210202016442159532&magazine=September-2020.

  17. Meijer K, Denys M, Lasar J, Birat J-P, Still, G, and Overmaat, B, Ironmak Steelmak 36 (2009) 249. https://doi.org/10.1179/174328109X439298.

    Article  CAS  Google Scholar 

  18. Technologies Customized List, 2017. https://www.jisf.or.jp/en/activity/climate/Technologies/documents/TechnologiesCustomizedListIndiav3.pdf.

  19. Mahanta B K, Sarkar S, Sen, P K, and Chakraborti N, Can Metall Q (2021). https://doi.org/10.1080/00084433.2021.2016344.

    Article  Google Scholar 

  20. Nogami H, Kashiwaya Y, and Yamada D, ISIJ Int 58 (2012) 1523.

    Article  Google Scholar 

  21. Yilmaz C, Wendelstorf J, and Turek T, J Clean Prod 154 (2017) 488. 1016/j.jclepro.2017.03.162.

    Article  CAS  Google Scholar 

  22. Mousa E, Wang C, Riesbeck J, and Larsson M, Renew Sustain Energy Rev 65 (2016) 1247.

    Article  Google Scholar 

  23. Norgate T, Haque N, Somerville M, and Jahanshahi S, ISIJ Int 52 (2012) 1472.

    Article  CAS  Google Scholar 

  24. Suopajärvi H, Umeki K, Mousa E, Hedayati A, Romar H, Kemppainen A, Wang C, Phounglamcheik A, Tuomikoski S, Norberg N, and Andefors A, Appl Energy 213 (2018) 384.

    Article  Google Scholar 

  25. Norgate T, and Langberg D, ISIJ Int 49 (2009) 587.

    Article  CAS  Google Scholar 

  26. Feliciano-Bruzual C, and Mathews J A, Rev Metal 49 (2013) 458. https://doi.org/10.3989/revmetalm.1331.

  27. Chatterjee A, Sponge Iron Production by Direct Reduction of Iron Oxide, PHI, New Delhi (2012).

  28. Kekkonen M, and Holappa L E, Comparison of different coal based direct reduction processes, Report, Helsinki University of Technology, TKK-MK-99 (2000).

  29. Fastmet Process. https://www.kobelco.co.jp/english/products/ironunit/fastmet/. Accessed January 2021.

  30. Kumar B, Mishra S, Roy G G, and Sen P K, Steel Res Int 88 (2017) 1. https://doi.org/10.1002/srin.201600265.

    Article  CAS  Google Scholar 

  31. Mishra S, and Roy G G, Metall Mater Trans B 47B (2016) 2347.

    Article  Google Scholar 

  32. Kumar, B, Roy, G G, and Sen, P K, Energy Clim Change 1 (2020) 100016. https//doi.org/https://doi.org/10.1016/j-eqycc.2020.100016.

    Article  Google Scholar 

  33. Kumar B, Roy G G, and Sen P K, Int J Exergy 36 (2021) 280. https://doi.org/10.1504/IJEX.2021.118721.

    Article  CAS  Google Scholar 

  34. Cheeley R, and Marcus L, Coal Gasification Solution for Indian Ironmaking, Midrex Technologies, Inc. http://www.midrex.com/wp-content/uploads/Midrex_Paper_Jan_2010_Kolkata_Conference.pdf (2010).

  35. Personal discussions and estimations with industry experts Shri A.C.R. Das.

  36. Energiron DRI Technology by Tenova and Danieli. https://www.tenova.com/fileadmin/user_upload/tenova_products/steel_making_direct_and_pre_reduction_technologies/energiron_book_2014.pdf.

  37. Mukhopadhyay A, and Ometto M, Energy Saving and CO2 reduction in Energiron DRI Production, 6th International Congress on the Science and Technology of Ironmaking – ICSTI, 42nd International Meeting on Ironmaking and 13th International Symposium on Iron Ore, October 14th to 18th, 2012, Rio de Janeiro, RJ, Brazil.

  38. Sarkaria D, Case Study: Al Reyadah CCUS Project, Abu Dhabi Carbon Capture Company, Panel 2: Carbon Capture Process: Lessons Learned in Project Start-Up, United Arab Emirates 2nd May 2017. https://www.cslforum.org/cslf/sites/default/files/documents/AbuDhabi2017/AbuDhabi17-TW-Sakaria-Session2.pdf (2017).

  39. DIRECT FROM MIDREX, “Ultra low CO2 steel making, transitioning to the hydrogen economy”, First Quarter 2020, Published in 2020 by Midrex Technologies. https://www.midrex.com/wp-content/uploads/Midrex-2020-DFM1QTR-Final.pdf (2020).

  40. Arcelor Mittal, Climate Action Report 2, 2021. https://constructalia.arcelormittal.com/files/Climate_Action_Report_2_July_2021--94aa5d83ef86cd03ec059ef8d1728966.pdf.

  41. Chatterjee A, Hot Metal Production by Smelting Reduction of Iron Oxide, PHI, ND (2010).

  42. Technology Factsheet, Hisarna with CCUS. https://www.tatasteeleurope.com/static_files/Downloads/Corporate/About%20us/hisarna%20factsheet.pdf.

  43. Meijer K, Zeilstra C, Teerhuis C, Ouwehand M, and van der Stel J, Trans Ind Inst Metals 66 (2013) 475.

    Article  CAS  Google Scholar 

  44. Tata Steel and TNO, 2018, HIsarna: Demonstrating Low CO2 Ironmaking at Pilot Scale. https://www.co2-cato.org/cato-download/5540/20181211_122258_14_2018.12.04_CATO-meets-the-projects_vanderStel.

  45. Danieli and Tenova, 2012, The New Generation of Direct Reduction Technology and Steelmaking Integration. https://www.energiron.com/wp-content/uploads/2019/05/ENERGIRON-DR-Technology-Overview.pdf.

  46. Sarkar S, Bhattacharya R, Roy G G, and Sen P K, Steel Res Int 87 (2017) 1. https://doi.org/10.1002/srin.201700248.

    Article  CAS  Google Scholar 

  47. Birat J P, Steel sectoral report, Contribution to the UNIDO roadmap on CCS - fifth draft. https://www.globalccsinstitute.com/archive/hub/publications/15671/global-technology-roadmap-ccs-industry-steel-sectoral-report.pdf (2010).

  48. IEA Environmental Projects Ltd. (IEAGHG) Iron and Steel CCS Study, 2013, Techno economics Integrated Steel Mill, Report 2013/04, July 2013. https://ieaghg.org/publications/technical-reports/reports-list/9-technical-reports/1001-2013-04-iron-and-steel-ccs-study-techno-economics-integrated-steel-mill.

  49. Farla J C M, Hendriks C A, and Blok K, Clim Change 29 (1995) 439. https://doi.org/https://doi.org/10.1007/BF01092428.

    Article  CAS  Google Scholar 

  50. Gielen D, Energy Convers Manag 44 (2003) 1027.

    Article  CAS  Google Scholar 

  51. Ho M, Bustamantea A, and Wiley D E, Int J Greenh Gas Control 19 (2013) 145.

    Article  CAS  Google Scholar 

  52. Tsupari E, Kärkia J, Arastoa A, and Pisilä E, Int J Greenh Gas Control 16 (2013) 278.

    Article  CAS  Google Scholar 

  53. Arasto A, Tsuparia E, Kärkia J, Erkki P, and Sorsamäkia L, Int J Greenh Gas Control 16 (2013) 271.

    Article  CAS  Google Scholar 

  54. Arasto A, Tsuparia E, Kärkia J, Sihvonenb M, and Liljabet J, Energy Procedia 37 (2013) 7117.

    Article  CAS  Google Scholar 

  55. Maiti A, Bhattacharya S, Bose S, Chatterjee S, and Mukherjee A, Evaluation of Techno-Economic Viability of Carbon Capture Utilization and Storage (CCU&S) With Carbon Credits for Steel Plants, AISTech 2019, Proceedings of the Iron & Steel Technology Conference 6–9 May 2019, Pittsburgh, PA, USA. 10.1000.377.010.

  56. Arcelor Mittal Report. http://www.steelanol.eu/en. Accessed June 2021.

  57. Wich T, Lueke W, Deerberg G, and Oles M, Front Energy Res 7 (2020) 1. https://doi.org/https://doi.org/10.3389/fenrg.2019.00162.

    Article  Google Scholar 

  58. Gough C, and Upham P, Biomass energy with carbon capture and storage (BECCS): a review. Working Paper 147, Tyndall Centre for Climate Change Research. http://www.tyndall.ac.uk/publications/working_papers/working_papers.shtml (2010).

  59. Rootzén J, Kjärstad J, Johnsson F, and Karlsson H, International Conference on Negative CO2 Emissions, May 22–24, 2018, Göteborg, Sweden. https://www.researchgate.net/publication/329143960_Deployment_of_BECCS_in_basic_industry-a_Swedish_case_study (2018).

  60. IEA, Net Zero by 2050, IEA, Paris. https://www.iea.org/reports/net-zero-by-2050 (2021).

  61. Gielen D, Saygin D, Taibi E, and Birat J-P, J Ind Ecol 24 (2020) 1113.

    Article  Google Scholar 

  62. Proost J, Int J Hydrog Energy 45 (2020) 17067.

    Article  CAS  Google Scholar 

  63. Zapantis A, Report on “Blue Hydrogen” Global CCS Institute. https://www.globalccsinstitute.com/wp-content/uploads/2021/04/Circular-Carbon-Economy-series-Blue-Hydrogen.pdf (2021).

  64. World Steel Association, World Steel in Figures. https://www.worldsteel.org/en/dam/jcr:976723ed-74b3-47b4-92f6-81b6a452b86e/World%2520Steel%2520in%2520Figures%25202021.pdf (2021).

  65. World Steel Association, Factsheets, Scrap Use in Steel Industry. https://www.worldsteel.org/publications/fact-sheets.html (2021).

  66. World Steel Association, Raw Materials, In Factsheet: Steel and Raw Materials. https://www.worldsteel.org/steel-by-topic/raw-materials.html. Accessed June 2021 (2021).

  67. Sahoo M, Sarkar S, Das A C R, Roy G G, and Sen P K, Steel Res Int 90 (2019) 1.

    Article  Google Scholar 

  68. Amato A, Brimacombe L, and Howard N, Ironmak Steelmak 23 (1996) 236.

    Google Scholar 

  69. Toktarova A, Karlsson I, Rootzén J, Göransson L, Odenberger M, and Johnsson F, Energies 13 (2020) 3840. https://doi.org/10.3390/en13153840.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gour Gopal Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, P.K., Roy, G.G. Climate Change and Emission Reduction Pathways for a Large Capacity Coal-Based Steel Sector: Implementation Issues. Trans Indian Inst Met 75, 2453–2464 (2022). https://doi.org/10.1007/s12666-022-02622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02622-5

Keywords

Navigation