Skip to main content

Advertisement

Log in

Structure and Properties of Ti–Zr–Ni–Co–Cu High-Entropy Alloy After Powder Bed Fusion of Powders Produced by Mechanical Alloying and Plasma Spheroidization

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this paper, the Ti25Zr25Ni25Co10Cu15 high entropy alloy has been investigated. A novel approach to manufacture high-temperature shape memory alloys is proposed. A fundamental possibility to obtain compact samples by powder bed fusion using a laser beam (PBF-LB) from Ti25Zr25Ni25Co10Cu15 powder obtained by mechanical alloying and plasma spheroidization is shown. During PBF-LB, a mixed structure is formed. It consists of B2-TiNi-type austenite with Laves phases and zirconium oxides. The average grain size is around 5 μm. The hardness of the alloy produced is more than 600 HV and significantly exceeds that of the alloy produced by conventional techniques. The ultimate compressive strength and the compressive yield strength of the samples are 640 MPa, and 600 MPa, respectively, meaning the synthesized samples are significantly inferior to the alloys produced by conventional smelting technologies. However, the ductility of 1.3% is comparable to that of similar alloys and indicates potential prospects of PBF-LB to manufacture Ti–Zr–Ni–Co–Cu HEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cantor B, Chang I T H, Knight P, and Vincent A J B, Mater Sci Eng A 375–377 (2004) 213. https://doi.org/10.1016/j.msea.2003.10.257.

    Article  CAS  Google Scholar 

  2. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004) 299. https://doi.org/10.1002/adem.200300567.

    Article  CAS  Google Scholar 

  3. Miracle D B, Miller J D, Senkov O N, Woodward C, Uchic M D, and Tiley J, Entropy 16 (2014) 494. https://doi.org/10.3390/e16010494.

    Article  CAS  Google Scholar 

  4. Praveen S, and Kim H S, Adv Eng Mater 20 (2018) 1. https://doi.org/10.1002/adem.201700645.

    Article  CAS  Google Scholar 

  5. Lee J I, Tsuchiya K, Tasaki W, Oh H S, Sawaguchi T, Murakami H, Hiroto T, Matsushita Y, and Park E S, Sci Rep 9 (2019) 1. https://doi.org/10.1038/s41598-019-49529-8.

    Article  CAS  Google Scholar 

  6. Firstov G, Koval Y, van Humbeeck J, Timoshevskii A, Kosorukova T, and Verhovlyuk P, Mater Sci Found 81–82 (2015) 207. https://doi.org/10.4028/www.scientific.net/msfo.81-82.207.

    Article  Google Scholar 

  7. Chen C-H, and Chen Y-J, Scr Mater 162 (2019) 185. https://doi.org/10.1016/j.scriptamat.2018.11.023.

    Article  CAS  Google Scholar 

  8. Chen C H, Chen Y J, and Shen J J, Met Mater Int 50 (2019) 617. https://doi.org/10.1007/s12540-019-00383-3.

    Article  CAS  Google Scholar 

  9. Aksoy C B, Canadinc D, and Yagci M B, Mater Chem Phys 236 (2019) 121802. https://doi.org/10.1016/j.matchemphys.2019.121802.

    Article  CAS  Google Scholar 

  10. Hong S H, Kim J T, Park H J, Kim Y S, Suh J Y, Na Y S, Lim K R, Shim C H, Park J M, and Kim K B, J Alloys Compd 692 (2017) 77. https://doi.org/10.1016/j.jallcom.2016.09.023.

    Article  CAS  Google Scholar 

  11. Firstov G S, Visn Nac Acad Nauk Ukrai’ni 06 (2018) 19. https://doi.org/10.15407/visn2018.06.019.

  12. Ntouanoglou K, Stavropoulos P, and Mourtzis D, Procedia Manuf 18 (2018) 120. https://doi.org/10.1016/j.promfg.2018.11.016.

    Article  Google Scholar 

  13. Farber E, Zhu J N, Popovich A, and Popovich V, Mater Today Proc 30 (2019) 761. https://doi.org/10.1016/j.matpr.2020.01.563.

    Article  CAS  Google Scholar 

  14. Yamamoto T, Kato H, Murakami Y, Kimura H, and Inoue A, Acta Mater 56 (2008) 5927. https://doi.org/10.1016/j.actamat.2008.08.003.

    Article  CAS  Google Scholar 

  15. Kim A, Makhmutov T, Razumov N, Silin A, Popovich A, Zhu J N, and Popovich V, Mater Today Proc 30 (2019) 679. https://doi.org/10.1016/j.matpr.2020.01.521.

    Article  CAS  Google Scholar 

  16. Makhmutov T, Razumov N, Kim A, Ozerskoy A, Mazeeva A, and Popovich A, Met Mater Int 27 (2020) 50. https://doi.org/10.1007/s12540-020-00747-0.

    Article  CAS  Google Scholar 

  17. Saedi S, Moghaddam N S, Amerinatanzi A, Elahinia M, and Karaca H E, Acta Mater 144 (2018) 552. https://doi.org/10.1016/j.actamat.2017.10.072.

    Article  CAS  Google Scholar 

  18. Chen G, Zhao S Y, Tan P, Yin J, Zhou Q, Ge Y, Li Z F, Wang J, Tang H P, and Cao P, Trans Nonferrous Met Soc China (English Ed) 27 (2017) 2647. https://doi.org/10.1016/S1003-6326(17)60293-0.

    Article  CAS  Google Scholar 

  19. Kim Y-W, Chung Y-S, Choi E-S, Nam T-H, and Im Y-M, J Korea Foundry Soc 31 (2011) 26. https://doi.org/10.7777/jkfs.2011.31.1.026.

    Article  Google Scholar 

  20. Razumov N G, Makhmutov T Y, Kim A, Goncharov I S, Ozerskoi N E, Silin A O, and Mazeeva A K, and Popovich AA, Metallogr Microstruct Anal 10 (2021) 474. https://doi.org/10.1007/s13632-021-00770-6.

    Article  CAS  Google Scholar 

  21. Persson K, TiNi mp-571 (2016). https://doi.org/10.17188/1276044.

Download references

Acknowledgements

This research was carried out with the support of the State contract # H.4щ.241.09.20.1081 dated June 4, 2020 “Development and material science substantiation of the design of materials and products based on shape memory alloys with a controlled structure and piezoelectric ceramics using additive 4D technologies. Stage of 2020” (IGK 17706413348200001110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mazeeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razumov, N.G., Makhmutov, T.Y., Kim, A. et al. Structure and Properties of Ti–Zr–Ni–Co–Cu High-Entropy Alloy After Powder Bed Fusion of Powders Produced by Mechanical Alloying and Plasma Spheroidization. Trans Indian Inst Met 75, 2529–2538 (2022). https://doi.org/10.1007/s12666-022-02616-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02616-3

Keywords

Navigation