Skip to main content

Advertisement

Log in

Strengthening Behaviour and Microstructural Properties during the Compaction of Reduced Blast Furnace Flue Dust—Fly Ash—Iron Metal Matrix Composite Fines using Powder Metallurgy Route

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Products developed through the powder metallurgy route have significantly contributed to structural application, automotive, and aircraft industry in the last decades. Several research works are available on the use of pure metal powder for the development of useful products through the powder metallurgy process. The study on the physical and mechanical properties of compacted reduced composite fines produced after crushing of reduced composite briquette containing Blast furnace flue dust, iron oxide, graphite powder, and fly ash is limited. The physical property such as density of green briquettes made with reduced composite fines, and 0.5% sodium silicate has been measured as a function of compaction pressures (75, 90, and 100 MPa). The maximum density of 5341.6 kg/m3 was achieved at 100 MPa pressure. The samples possessing maximum density has been sintered at different temperatures of 1100 °C, 1150 °C, and 1200 °C for 60 min, 90 min, and 120 min respectively. The density, compressive strength, and hardness were measured after sintering of the samples. The samples were sintered at 1150 °C for 120 min achieve maximum density of 6111.4 kg/m3, compressive strength of 238.72 MPa, and hardness of 109.34 VHN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Galanty M, Kazanowski P, Kanuswan P, and Misiolek W Z J Mater Process Technol 125 (2002) 491.

    Article  Google Scholar 

  2. Ordiales M, Iglesias J, Gonzales D F, Gorostiaga J S, Fuentes A, and Verdeja L F, Metals 6 (2016) art. ID 203. https://doi.org/10.3390/met6090203

    Article  Google Scholar 

  3. Bardhan P K, Patra S, and Sutradhar G, Mater Sci Appl 1 (2010) 152. Doi:https://doi.org/10.4236/msa.2010.13024

    Article  CAS  Google Scholar 

  4. Narasimhan K S, Adv Perform Mater 3 (1996) 7. DOI: https://doi.org/10.1007/BF00136857

    Article  CAS  Google Scholar 

  5. Kruzhanov V S, Powder Metal Metal Ceram 57 (2018) 431. DOI: https://doi.org/10.1007/s11106-018-0002-1

  6. Tiwari S, Rajput P, and Srivastava S, Int Scholar Res Network SRN Metal (2012) Article ID 195654. DOI: https://doi.org/10.5402/2012/195654

    Article  Google Scholar 

  7. Bouvard D, Powder Technol 111 (2000) 231. DOI: https://doi.org/10.1016/S0032-5910(99)00293-4

    Article  CAS  Google Scholar 

  8. Das R, Mondal M K, and Pramanik S, J Inst Eng India Ser D 102 (2021) 173.

    Article  CAS  Google Scholar 

  9. Naransimhan K S, Mater Chem Phys 67 (2001) 56.

    Article  Google Scholar 

  10. Wang W F, J Mater Eng Perform 16 (2007) 533. DOI:

    Article  CAS  Google Scholar 

  11. Kung K Y, Horng J T, and Chiang K T, Int J Adv Manuf Technol 40 (2009) 95. DOI: https://doi.org/https://doi.org/10.1007/s00170-007-1307-2

    Article  Google Scholar 

  12. Eksi A K and Yuzbasioglu A H, Mater Des 28 (2007) 1364. Doi:https://doi.org/10.1016/j.matdes.2006.01.018

    Article  CAS  Google Scholar 

  13. Kwon Y S and Savitskii A,J Mater Synth Process 9 (2001) 299. DOI: https://doi.org/https://doi.org/10.1023/A:1016356305654

    Article  CAS  Google Scholar 

  14. Upadhyaya G S, Sci. Sinter. 43 (2011) 3. DOI:https://doi.org/10.2298/SOS1101003U

    Article  Google Scholar 

  15. Somerville M A, J Sustain Metall 2 (2016) 228. DOI https://doi.org/10.1007/s40831-016-0057-5

    Article  Google Scholar 

  16. Gupta R C, Misra S N, ISIJ Int 41 (2001) S9.

    Article  CAS  Google Scholar 

  17. Iguchi Y, Kamei R, Tetsu Hagane 85 (1999) 13.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the NIT Durgapur for all kinds of support. We want to thank the SAIL- DSP and DVC- Durgapur for providing the raw materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Pramanik.

Ethics declarations

Conflict of interest

No other funding agency funded this project. The experiments were carried out in the laboratories of Metallurgical and Materials Engineering Department, NIT Durgapur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Mondal, M.K. & Pramanik, S. Strengthening Behaviour and Microstructural Properties during the Compaction of Reduced Blast Furnace Flue Dust—Fly Ash—Iron Metal Matrix Composite Fines using Powder Metallurgy Route. Trans Indian Inst Met 75, 2255–2263 (2022). https://doi.org/10.1007/s12666-022-02592-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02592-8

Keywords

Navigation