Skip to main content
Log in

Volume Effects of Alloying: A Thermodynamic Perspective

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This study presents a thermodynamic analysis of volume change (Δ°Vm) accompanying alloy formation. Utilizing the thermodynamic identity connecting volume change with Gibbs energy (Δ°Gm) of mixing, Δ°Vm(x) = (∂Δ°Gm/∂p)T,x and closed-form analytical approximations are obtained for both enthalpy (Δ°Vm)h and entropy (Δ°Vm)s-based contributions to Δ°Vm. It is shown that both positive and negative volume change could be supported in a single alloy system in different composition regimes, depending on whether the effect of pressure on enthalpy is dominating over entropy effects of alloying or otherwise. Further, it is also established that entropy contribution to volume change is primarily influenced by volume expansion mismatch between solid solution and compositionally averaged end members. The thermodynamic analysis is supplemented by a phenomenological treatment of enthalpy contribution to volume change arising out of different microscopic contributions to mixing enthalpy. Possible thermodynamic justification of empirical polynomial representation of composition induced volume variation is also presented. An illustrative case study on volume effects accompanying the formation of bcc solid solution phase in U1−xZrx system is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pauling L, Proc. Nat. Acad, Sci. USA, 84 (1987) 4754.

  2. Miedema A R and Niessen A K, Physica B, 114 (1982) 367.

  3. Watson R E and Bennett L H, Acta Metall., 30 (1982) 1941.

  4. Watson R E and Bennett L H, Acta Metall., 32 (1984) 49.

  5. Fornasini M L, in Modern Perspectives in Inorganic Crystal Chemistry, (ed) Parthe E, NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 382. Springer, Dordrecht (1992) p 57.

  6. Pani M and Merlo F, in Alloys and Intermetallic Compounds, (ed) Cristina Artini, Taylor & Francis, Boca Raton (2017), p 81.

  7. Bhatia M L, Intermetallics, 7 (1999) 641.

  8. Ellner M, J. Less Comm. Met., 78 (1981) 21.

  9. Ellner M, J. Alloys Compd., 366 (2004) 222.

  10. Ellner M and Park I, Metall. Mater. Trans., A, 33 (2002) 3591.

  11. F Merlo, J. Phys. F: Met. Phys., 18 (1988) 1905.

  12. Pani M and Merlo F, J. Solid St. Chem., 184 (2011) 959.

  13. Turnbull D, Acta Metall et Mater., 38 (1990) 243.

  14. Watanabe M, Adachi M and Fukuyama M, J. Mater. Sci., 54 (2019) 4306.

  15. Mizuno A, Kawauchi H, Tanno M, Murai K, Kobatake H, Fukuyama H, Tsukada T and Watanabe M, ISIJ International, 54 (2014) 2120.

  16. Brillo J, Watanabe M and Fukuyama F, J. Mol. Liq., 326 (2021) 114395.

  17. Yan Lin He, Xiao-Gang Lu, Na-Qiang Zhu and Bo Sundman, Chin. Sci. Bull., 59 (2014) 1646.

  18. Xuan tong Liu and Katsunari Oikawa, Mater. Trans., 55 (2014) 1673.

  19. Alonso J A, Gonzales and Iniguez M P, Phys. Stat. Solidi, (a) 123 (1984) 485.

  20. Khanna K N, Pal C and Singh P, Phys. Stat. Solidi, (b), 148 (1987) 55.

  21. Lu X, Selleby M and Sundman B, Acta Mater., 53 (2005) 2259.

  22. Burton, B P, Dupin N, Fries S G, Grimvall G, Fernandez-Guillermet A, Miodownik A P, Oates W A and Vinograd V, Z. Metallkd, 92 (2001) 514.

  23. Hallstedt B, Dupin N, Hillert M, Höglund L, Lukas H L, Schuster J C and Solak N, CALPHAD, 31 (2007) 28.

  24. van de Walle A, Sun R, Hong Q J and Kadkhodaei S, CALPHAD, 58 (2017) 70.

  25. Liu Z –K and Wang Y, Computational Thermodynamics of Materials, Cambridge University Press, Cambridge (2016) 1–251.

  26. Turchi P E A, Abrikosov I A, Burton B, Fries S G, Grimvall G, Kaufman L, Korzhavy P, Rao Manga V, Ohno M, Pisch A, Scott A and Zhang W Q, CALPHAD, 31 (2007) 4.

  27. Schaller H –J, Ber. Bunsenges Phys. Chem., 87 (1983) 734.

  28. Hallstedt B, CALPHAD, 31 (2007) 292.

  29. Anderson O L, Equations of State for Solids in Geophysics and Ceramic Science, Oxford University Press, New York (1995) 1-405.

  30. Anderson O L and Nafe J E, J. Geophys. Res., 70 (1965) 3951.

  31. Bo Xu, Qianquian Wang and Yongjun Tian, Sci. Reports, 3, (2013) 3068.

  32. Chonghe Li and Ping Wu, Chem. Mater., 13 (2001) 4642.

  33. Marcus Y, Phys. Chem. Liq., 55 (2016) 1.

  34. Shaikhiev G F and Sulaimanov A S, Russ. J. Phys. Chem., 55 (1981) 3024.

  35. Wacke S, Gorecki T, Gorecki Cz and Ksiazek K, J. Phys.: Conf. Ser., 289 (2011) 012020.

  36. Raju S, Metall. Mater. Trans., 50 (2019) 3320.

  37. Raju S, Metall. Mater. Trans., A 2021 https://doi.org/10.1007/s11661-021-06466-4

  38. Kubaschewski O, Alcock C B and Spencer P J, Materials Thermochemistry, sixth revised edition, Pergamon Press, Oxford (1993) 1–361.

  39. Pearson W B, A Handbook of Lattice Spacings and Structures of Metals and Alloys, International Series of Monographs on Metal Physics and Physical Metallurg, vol. 4, Pergamon Press, Oxford (1958) 1-1044.

  40. Coreno-Alonso O and Coreno-Alonso J, Intermetallics, 12 (2004) 117.

  41. Hafner J, J. Phys. F Met. Phys. 15 (1985) 43.

  42. Turchanin and Agraval P G, Powder Met. Met. Cer., 47 (2008) 26.

  43. Lei Zhang and Shichun Li, Physica B, 434 (2014).

  44. Gschneidner K A and Vineyard G H, J. Appl. Phys., 33 (1962) 3444.

  45. Pines, B J, J. Phys., 3 (1940) 309.

  46. Sarkisov E S, Russ. J. Phys. Chem., 34 (1960) 202.

  47. Alonso J A and March N. H, Electrons in Metals and Alloys, Academic Press, London (1989) 1–603.

  48. Pettifor D G, Solid State Phys., 40 (1987) 43.

  49. Hafner J, From Hamiltonians to Phase Diagrams: The Electronic and Statistical-Mechanical Theory of sp-Bonded Metals and Alloys, Springer, Berlin (1987) 1-404.

  50. Vegard Y L, Z. Phys., 5 (1921) 17.

  51. Lubarda V A, Mech. Mater., 35 (2003) 53.

  52. Landa A, Klepeis J E, Rudd R E, Casperson K J and Young D A, App. Sci., 11 (2021) 6231.

  53. Hirata T, Dorogova M and Filipek S M, Phys. Stat. Solidi, (a), 201 (2004) 1458.

  54. Zen E, Amer. Mineral., 41 (1956) 523.

  55. Vinograd, V L, Sluiter, M H F, Winkler B, Putnis A, Halenius U, Gale J D and Becker U, Mineral Mag., 68 (2004) 101.

  56. Wei S –H, Mbaye A A, Ferreira L G and Zunger A, Phys. Rev. B, 36 (1987) 4163.

  57. Lu Z W, Wei S H, Zunger A, Frota-Pessoa S and Ferreira L G, Phys. Rev. B, 44 (1991) 512.

  58. Van Uitert, L G, O’ Bryan H M, Lines, M E, Guggenheim H J and Zydzik G, Mat. Res. Bull., 12 (1977) 261.

  59. Kaptay G, Csicsovszki G and Yaghmaee M S, Mater. Sci. Forum, 414-415 (2003) 235.

  60. Tanaka T, Gokcen N A, Morita, Z I and Iida T, Z. Metallkd., 84 (1993) 3.

  61. De Boer F R, Mattens, W C M, Boom R, Miedema A R and Niessen A K, Cohesion in Metals: Transition metal alloys, North Holland, Amsterdam (1988) 1-774.

  62. Zhang Bangwei, Liao Shuzhi, Shu Xiaolin, Xie Haowen and Yuan Xiaojian, Phys. Met. Metall., 114 (2013) 457.

  63. Lopez, J M and Alonso J A, Z. Naturforsch., 40a (1985) 1199.

  64. Hillert M and Jarl M, CALPHAD, 2 (1978) 227.

  65. Cheng D, Wang S and Ye H, Phys. Rev. B, 64 (2001) 024107.

  66. Eshelby, J D, Solid State Phys., 3 (1956) 79.

  67. Aubauer H P, Phys. Stat. Solidi, (a) 35 (1976) 487.

  68. Friedel J, Adv. Phys., 3 (1954) 446.

  69. Friedel J, Cohesion of Metallic Alloys: A short theoretical survey, in: Perspectives in Materials Research, Office of Naval Research Report, (1963) 65–74.

  70. Jacob K T, Raj S and Rannesh L, Int. J. Mater. Res., 49 (2007) 776.

  71. Lukas H L, Fries S G and Sundman B, Computational Thermodynamics: The Calphad Method, Cambridge University Press, Cambridge (2007) 1-307.

  72. Frank A Rough and Bauer A R, Constitution of Uranium and Thorium Alloys, Report No.: BMI 1300, UC-25 Met. Ceramics, (1958) 1–138.

  73. Masayoshi Kurihara, Masaru Hirata, Rika Sekine, Jun Onoe and Hirohide Nakamatsu, J. Nucl. Mater., 326 (2004) 75.

  74. Dawn E Janney, Metallic Fuels Handbook, NL/EXT-15–36520, Revision 3, Part 1, (2018) 1–183.

  75. Shevchuk Yu. A, Smirnov E A and Fedorov G B, Atomic Energy, 71&72 (1992) 642.

  76. Fedorov G B and Smirnov E A, Atomic Energy, 21 (1966) 189.

  77. Smruthi Dash, Kaushik Ghosal and Kutty T R G, J. Thermal Anal. Calorim., 112 (2012) 179.

  78. Wei Xiong, Wei Xe, Chao Shen and Dane Morgan, J. Nucl. Mater., 443 (2013) 331.

  79. Landa A, Soderlind P and Turchi P E A, J. Alloys Compd., 478 (2009) 103.

  80. Landa A, Soderlind P and Turchi P E A, J. Nucl. Mater., 414 (2011) 132.

  81. Bozzolo G, Comp. Mater., Sci., 50 (2010) 447.

Download references

Acknowledgements

The author acknowledges Dr. Balasubramanian Venkatraman, Director, IGCAR, for the encouragement, support and permission to publish this study. The benign influence of late Dr. Srikumar Banerjee, formerly the Chairman, DAE and Secretary to the Government of India, in nurturing and motivating the academic aspirations of the author, is gratefully recalled. This study is dedicated to the 75th anniversary of India’s independence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian Raju.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, S. Volume Effects of Alloying: A Thermodynamic Perspective. Trans Indian Inst Met 75, 1031–1041 (2022). https://doi.org/10.1007/s12666-022-02550-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02550-4

Keywords

Navigation