Skip to main content

Shape Memory Characteristics of Silver-Added Fe–30Mn–6Si Alloy

Abstract

Fe–30Mn–6Si ternary alloy is promising for biodegradable applications in recent years due to its high biodegradability and moderate shape memory performance. In this study, the effects of silver addition (1.2 wt%) on the martensitic transformation temperatures, mechanical properties, and shape recovery performance of solution-treated Fe–30Mn–6Si alloy were investigated. Contrary to the as-cast condition, silver-microalloying caused a decrease in the martensite volume fraction in solution-treated samples. Silver-added alloy showed lower 0.2% offset compressive strength and higher shape recovery rate compared to ternary alloy owing to its martensite start temperature being close to the room (deformation) temperature. Better shape recovery performance was also attributed to the austenite-strengthening effect of the Ag-rich precipitates. The tested Fe–30Mn–6Si–1.2Ag alloy exhibited full shape recovery for a 4% compressive pre-strain after three thermo-mechanical training cycle.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Sato A, Chishima E, Soma K, and Mori T, Acta Metall 30 (1982) 1177.

    CAS  Article  Google Scholar 

  2. Sato A, Yamaji Y and Mori T, Acta Metall 34 (1986) 287.

    CAS  Article  Google Scholar 

  3. Jiang B, Qi X, Yang S, Zhou W, and Hsu T Y, Acta Mater 46 (1998) 501.

    CAS  Article  Google Scholar 

  4. Hsu T Y and Zuyao X, Mater Sci Eng A 273–275 (1999) 494.

    Article  Google Scholar 

  5. Chung C Y, Shuchuan C, and Hsu T Y, Mater Charact 37 (1996) 227.

    CAS  Article  Google Scholar 

  6. Lee W J, Weber B, Feltrin G, Czaderski C, Motavalli M, and Leinenbach C, Smart Mater Struct 22 (2013) 125037.

  7. Lee W J, Weber B, and Leinenbach C, Constr Build Mater 95 (2015) 600.

    Article  Google Scholar 

  8. Yamada H, Tanahashl H, Maruyama T, and Matsuda S, ISIJ Int 30 (1990) 674.

    Article  Google Scholar 

  9. Chen J, Sun J, Yang Q, Peng H, Wang S, and Wen Y, Adv Eng Mater 18 (2016) 1426.

    CAS  Article  Google Scholar 

  10. Lee W J, Weber B, Feltrin G, Czaderski C, Motavalli M and Leinenbach C, Mater Sci Eng A 581 (2013) 1.

    CAS  Article  Google Scholar 

  11. Pan M M, Zhang X M, Zhou D, Misra R D K, and Chen P, Mater Sci Eng A 797 (2020) 140107.

  12. Liu B, Zheng Y F, and Ruan L, Mater Lett 65 (2011) 540.

    CAS  Article  Google Scholar 

  13. Feng Y P, Blanquer A, Fornell J, Zhang H, Solsona P, Baró M D, Suriñach S, Ibáñez E, García-Lecina E, Wei X, Li R, Barrios L, Pellicer E, Nogués C, and Sort J, Mater Chem B 4 (2016) 6402

    CAS  Article  Google Scholar 

  14. Drevet R, Zhukova Y, Malikova P, Dubinskiy S, Korotitskiy A, Pustov Y, and Prokoshkin S, Metall Mater Trans A 49 (2018) 1006.

    CAS  Article  Google Scholar 

  15. Babacan N, Kochta F, Hoffmann V, Gemming T, Kühn U, Giebeler L, Gebert A, and Hufenbach J, Mater Today Commun 28 (2021) 102689.

  16. Ariapour A, Perovic D D, and Yakubtsov I, Metall Mater Trans A 32 (2001) 1621.

    Article  Google Scholar 

  17. Kajiwara S, Liu D, Kikuchi T, and Shinya N, Scr Mater 44 (2001) 2809.

    CAS  Article  Google Scholar 

  18. Dong Z, Klotz U E, Leinenbach C, Bergamini A, Czaderski C, and Motavalli M, Adv Eng Mater 11 (2009) 40.

    CAS  Article  Google Scholar 

  19. Yang C H, Lin H C, and Lin K M, Mater Sci Eng A 518 (2009) 139.

    Article  Google Scholar 

  20. Maji B C, Krishnan M, Sujata M, Gouthama, and Ray R K, Metall Mater Trans A 44 (2013) 172.

    CAS  Article  Google Scholar 

  21. Prendota W, Goc K, Miyazawa S, Takasaki A, Rybicki D, and Kapusta C, Adv Mater Sci Eng 2018 (2018) 1.

    Article  Google Scholar 

  22. Kajiwara S, and Ogawa K, Mater Sci Forum 327–328 (2000) 21.

    Google Scholar 

  23. Koyama M, Sawaguchi T, Ogawa K, Kikuchi T, and Murakami M, Mater Sci Eng A 497 (2008) 353.

    Article  Google Scholar 

  24. Wan J, Huang X, Chen S, and Zuyao T Y H X, Mater Trans 43 (2002) 920.

    CAS  Article  Google Scholar 

  25. Liu R-Y, He R-G, Xu L-Q, and Guo S-F, Acta Metall Sin (English Lett) 31 (2018) 584.

    CAS  Article  Google Scholar 

  26. Sotoudeh Bagha P, Khakbiz M, Sheibani S, and Hermawan H, J Alloys Compd 767 (2018) 955.

    CAS  Article  Google Scholar 

  27. Caligari Conti M, Mallia B, Sinagra E, Schembri Wismayer P, Buhagiar J, and Vella D, Heliyon 5 (2019) e02522.

  28. Loffredo S, Paternoster C, Giguère N, Barucca G, Vedani M, and Mantovani D, Acta Biomater 98 (2019) 103.

    CAS  Article  Google Scholar 

  29. Sotoudeh Bagha P, Sheibani S, Khakbiz M, and Ebrahimi-Barough S, Mater Sci Eng C 88 (2018) 88.

    CAS  Article  Google Scholar 

  30. Sotoudeh Bagha P, Khakbiz M, Sheibani S, Ebrahimi-Barough S, and Hermawan H, ACS Biomater Sci Eng 6 (2020) 2094.

    Article  Google Scholar 

  31. Charfi A, Bouraoui T, Feki M, Bradai C, and Norman B, C R Chim, 12 (2009) 270.

    CAS  Article  Google Scholar 

  32. Hufenbach J, Wendrock H, Kochta F, Kühn U, and Gebert A, Mater Lett 186 (2016) 330.

    Article  Google Scholar 

  33. Hufenbach J, Kochta F, Wendrock H, Voß A, Giebeler L, Oswald S, Pilz S, Kühn U, Lode A, Gelinsky M, and Gebert A, Mater Des 142 (2018) 22.

    CAS  Article  Google Scholar 

  34. Peng H, Wang G, Wang S, Chen J, MacLaren I, and Wen Y, Mater Sci Eng A 712 (2018) 37.

    CAS  Article  Google Scholar 

  35. Otubo J, Nascimento F C, Mei P R, Cardoso L P, and Kaufman M J, Mater Trans 43 (2005) 916.

    Article  Google Scholar 

  36. Sato A, Kubo H, and Maruyama T, Mater Trans 47 (2006) 571.

    CAS  Article  Google Scholar 

  37. Peng H, Chen J, Wang Y, and Wen Y, Adv Eng Mater 20 (2018) 1.

    Google Scholar 

  38. Gu Q, Van Humbeeck J, and Delaey L, J Phys IV 4 (1994) 135.

    Google Scholar 

  39. Huang C, Chiang H, Lan W, and Chou H, Biofouling 27 (2011) 449.

    CAS  Article  Google Scholar 

  40. Chiang W, Tseng I, Møller P, Rischel L, Tolker-nielsen T, and Wu J, Mater Chem Phys 119 (2010) 123.

    CAS  Article  Google Scholar 

  41. Koyama M, Sawaguchi T, and Tsuzaki K, Mater Sci Eng A 528 (2011) 2882

    Article  Google Scholar 

  42. Guo Q, Dong Z, Liu Z, Yu L, and Li K, Mater Sci Technol 30 (2014) 1477.

    CAS  Article  Google Scholar 

  43. Lin H C, Lin K M, Wu S K, Wang T P, and Hsiao Y C, Mater Sci Eng A 438–440 (2006) 791.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Georg Forster Fellowship from Alexander von Humboldt (AvH) Foundation. The author would like to thank K.-U. Baumgart, S. Donath, B. Bartusch, B. Gebel, N. Geißler, R. Keller, and A. Voß for their technical supports. Prof. J. Hufenbach is gratefully acknowledged for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Babacan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babacan, N. Shape Memory Characteristics of Silver-Added Fe–30Mn–6Si Alloy. Trans Indian Inst Met 75, 1595–1601 (2022). https://doi.org/10.1007/s12666-022-02542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02542-4

Keywords

  • Fe–Mn–Si shape memory alloy
  • Microstructure
  • Martensitic transformation
  • Mechanical properties
  • Shape recovery rate