Skip to main content
Log in

Concomitant Clustering and Ordering Leading to B2 + BCC Microstructures in Refractory High Entropy Alloys

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The presence of substantial concentrations of multiple principal elements in high entropy alloys or complex concentrated alloys, inevitably results in competing for clustering (or phase separation) and ordering tendencies between the constituent elemental pairs. Such competition in turn can result in interesting phase transformation pathways involving spinodal decomposition coupled with chemical ordering. Recently, a microstructure resembling that of Ni-base superalloys, with discrete BCC precipitates in a B2 matrix, in a checkered fashion, has been reported in multiple refractory high entropy alloys. This paper examines the microstructural evolution and the phase transformation pathways involved in two such candidate alloys, Al0.5NbTa0.8Ti1.5V0.2Zr and Al0.5Mo0.5NbTa0.5TiZr. The formation of this checkered pattern B2 + BCC microstructure is rationalized using schematic free energy curves and phase modulus criteria. Further, the effect of such phase distribution on mechanical properties is investigated via room-temperature compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Cantor, Entropy. 16 (2014) 4749. https://doi.org/10.3390/e16094749.

    Article  CAS  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299. https://doi.org/10.1002/adem.200300567.

    Article  CAS  Google Scholar 

  3. D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448. https://doi.org/10.1016/j.actamat.2016.08.081.

    Article  CAS  Google Scholar 

  4. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics. (2010). https://doi.org/10.1016/j.intermet.2010.05.014.

    Article  Google Scholar 

  5. O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, J. Mater. Res. (2018). https://doi.org/10.1557/jmr.2018.153.

    Article  Google Scholar 

  6. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics. 19 (2011) 698.

    Article  CAS  Google Scholar 

  7. O.N. Senkov, C. Woodward, D.B. Miracle, JOM. 66 (2014) 2030. https://doi.org/10.1007/s11837-014-1066-0.

    Article  CAS  Google Scholar 

  8. O.N. Senkov, S. V. Senkova, C. Woodward, Acta Mater. 68 (2014) 214. https://doi.org/10.1016/j.actamat.2014.01.029.

    Article  CAS  Google Scholar 

  9. D.B. Miracle, M.-H. Tsai, O.N. Senkov, V. Soni, R. Banerjee, Scr. Mater. 187 (2020) 445.

    Article  CAS  Google Scholar 

  10. V. Soni, B. Gwalani, T. Alam, S. Dasari, Y. Zheng, O.N. Senkov, D. Miracle, R. Banerjee, Acta Mater. 185 (2020) 89. https://doi.org/10.1016/j.actamat.2019.12.004.

    Article  CAS  Google Scholar 

  11. Senkov O N, Jensen J K, Pilchak A L, Miracle D B, Fraser H L (2018) Mater. Des. 139: 498. https://doi.org/10.1016/j.matdes.2017.11.033.

  12. R.C. Reed, 2006. https://doi.org/10.1017/CBO9780511541285.

    Article  Google Scholar 

  13. T.E. Whitfield, E.J. Pickering, K.A. Christofidou, C.N. Jones, H.J. Stone, N.G. Jones, J. Alloys Compd. 818 (2020) 152935. https://doi.org/10.1016/j.jallcom.2019.152935.

    Article  CAS  Google Scholar 

  14. O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, D.N. Seidman, Microsc. Microanal. 6 (2000) 437. https://doi.org/10.1007/s100050010051.

    Article  CAS  Google Scholar 

  15. W.A. Soffa, D.E. Laughlin, Acta. Metallurgica. 37 (1989) 3019–3028. https://doi.org/10.1016/0001-6160(89)90338-6.

    Article  CAS  Google Scholar 

  16. Banerjee S, Mukhopadhyay P, Phase Transformations - Examples from Titanium and Zirconium Alloys, 2007.

  17. Kadirvel K, Kloenne Z, Jensen J K, Fraser H, Wang Y, Phase-field modelling of transformation pathways and microstructural evolution in multi-principal element alloys, ArXiv Prepr. ArXiv2108.02071(2021).

  18. Cardarelli F, Materials Handbook — a concise desktop reference, Third, Montreal. https://doi.org/10.1016/s0261-3069(00)00075-3 (2001)

  19. J.W. Cahn, Acta Metall. (1962). https://doi.org/10.1016/0001-6160(62)90114-1.

    Article  Google Scholar 

  20. J. Zhu, L.Q. Chen, J. Shen, Model. Simul. Mater. Sci. Eng. 9 (2001) 499. https://doi.org/10.1088/0965-0393/9/6/303.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the US Air Force Office of Scientific Research grant FA9550-17-1-0395. The authors acknowledge the materials research facility (MRF) at the University of North Texas. YW would like to acknowledge the financial support from the air force office of scientific research (AFOSR) under Grant No. FA9550-20-1-0015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Dasari or R. Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3434 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasari, S., Soni, V., Sharma, A. et al. Concomitant Clustering and Ordering Leading to B2 + BCC Microstructures in Refractory High Entropy Alloys. Trans Indian Inst Met 75, 907–916 (2022). https://doi.org/10.1007/s12666-021-02518-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02518-w

Navigation