Skip to main content
Log in

Evolution of Oxide Film Formed on Machined Type 304L SS in High Temperature High Pressure Demineralised Water

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Although oxide films formed over austenitic stainless steel (SS) in high temperature high pressure (HTHP) demineralised (DM) water (with or without chemical addition) have been widely investigated, there are limited studies establishing properties of oxide film formed over surface worked SS. Grain fragmentation (increased grain boundary area) and strain in the surface and sub-surface layers of machined SS influence the oxidation mechanism. In this investigation, oxidation behaviour of machined type 304L SS was investigated in HTHP DM water (300 °C, 89 bar, dissolved oxygen < 45 ppb) for 15, 30, 45 and 60 days. Defect density (established by Mott–Schottky analysis) decreased with increasing duration of oxidation and a thin Cr-rich film (characterised by Micro laser—Raman spectroscopy and glow discharge optical emission spectroscopy) having the least defect density was detected after 60 days of oxidation. It is proposed that the initial high grain boundary area and high strain resulted in rapid oxidation of the machined surface, forming an inner oxide with high cationic vacancy concentration and a thick outer oxide by the precipitation of dissolved metal cations from the solution. With increasing oxidation time, the Cr-rich inner layer grew more compact and its ionic defect density decreased. The mechanism is explained using the point defect model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andresen P L, Corrosion 69 (2013) 1024.

    Article  CAS  Google Scholar 

  2. Okamura Y, Sakashita A, Fukuda T, Yamashita H and Futami T, in Trans SMiRT 17, Prague (2003).

  3. Fox M, J Mater Energ Syst 1 (1979) 3.

    Article  CAS  Google Scholar 

  4. Scott P M, Corros Sci 25 (1985) 583.

    Article  CAS  Google Scholar 

  5. Roychowdhury S, Kain V, Prasad R C, J Nucl Mater 410 (2011) 59.

    Article  CAS  Google Scholar 

  6. Roychowdhury S, Kain V, Gupta M, Prasad R C, Corros Sci 53 (2011) 1120.

    Article  CAS  Google Scholar 

  7. Roychowdhury S, Kain V, Neogy S, Srivastava D, Dey G K, Prasad R C, Acta Mater 60 (2012) 610.

    Article  CAS  Google Scholar 

  8. Das A, Roychowdhury S and Kain V, Mater Perform Charact 11 (2021) MPC20200152.

    Article  Google Scholar 

  9. Zinkle S J and Was G S, Acta Mater 61 (2013) 735.

    Article  CAS  Google Scholar 

  10. Chang L, Burke M G and Scenini F, Corros Sci 138 (2018) 54.

    Article  CAS  Google Scholar 

  11. Matthews R P, Knusten R D, Westraadt J E and Couvant T, Corros Sci 125 (2017) 175.

    Article  CAS  Google Scholar 

  12. Sun H, Wu X and Han E-H, Corros Sci 51 (2009) 2840.

    Article  CAS  Google Scholar 

  13. Dong L, Peng Q, Zhang Z, Shoji T, Han E-H, Ke W and Wang L, Nucl Eng Des 295 (2015) 403.

    Article  CAS  Google Scholar 

  14. Chen J, Xiao Q, Lu Z, Ru X, Peng H, Xiong Q and Li H, J Nucl Mater 489 (2017) 137.

    Article  CAS  Google Scholar 

  15. Kuang W, Wu X and Han E-H, Corros Sci 63 (2012) 259.

    Article  CAS  Google Scholar 

  16. Sun H, Wu X, Han E-H and Wei Y, Corros Sci 59 (2012) 334.

    Article  CAS  Google Scholar 

  17. Xu J, Wu X and Han E-H, Electrochim Acta 71 (2012) 219.

    Article  CAS  Google Scholar 

  18. Kuang W, Wu X and Han E-H, Corros Sci 52 (2010) 4081.

    Article  CAS  Google Scholar 

  19. Tapping R L, Davidson R D, McAlpine E and Lister D H, Corros Sci 26 (1986) 563.

    Article  CAS  Google Scholar 

  20. Ziemniak S E and Hanson M, Corros Sci 44 (2002) 2209.

    Article  CAS  Google Scholar 

  21. Jinlong L, Tongxiang L and Luo H, Nucl Eng Des 309 (2016) 1.

    Article  Google Scholar 

  22. Fisher K B, Miller B D, Johns E C and Marquis E A, Corros Sci 141 (2018) 88.

    Article  CAS  Google Scholar 

  23. Han G, Lu Z, Ru X, Chen J, Xiao Q and Tian Y, J Nucl Mater 467 (2015) 194.

    Article  CAS  Google Scholar 

  24. Han Y, Mei J, Peng Q, Han E-H and Ke W, Corros Sci 112 (2016) 625.

    Article  CAS  Google Scholar 

  25. Ma C, Han E-H, Peng Q and Ke W, Appl Surf Sci 442 (2018) 423.

    Article  CAS  Google Scholar 

  26. Ziemniak S E, Hanson M and Sander P C, Corros Sci 50 (2008) 2465.

    Article  CAS  Google Scholar 

  27. Cissé S, Laffont L, Tanguy B, Lafont M-C and Andrieu E, Corros Sci 56 (2012) 209.

    Article  Google Scholar 

  28. Terachi T, Yamada T, Miyamoto T, Arioka K and Fukuya K, J Nucl Sci Technol 45 (2008) 975.

    Article  CAS  Google Scholar 

  29. Stellwag B, Corros Sci 40 (1998) 337.

    Article  CAS  Google Scholar 

  30. Kuang W, Han E-H, Wu X and Rao J, Corros Sci 52 (2010) 3654.

    Article  CAS  Google Scholar 

  31. Kim Y J, Corrosion 51 (1995) 849.

    Article  CAS  Google Scholar 

  32. Robertson J, Corros Sci 32 (1991) 443.

    Article  CAS  Google Scholar 

  33. Macdonald D D, J Electrochem Soc 139 (1992) 3434.

    Article  CAS  Google Scholar 

  34. Das A, Roychowdhury S and Kain V, Corros Sci 176 (2020) 109022.

    Article  CAS  Google Scholar 

  35. Zheng Z J, Gao Y, Gui Y and Zhu M, Corros Sci 54 (2012) 60.

    Article  CAS  Google Scholar 

  36. Ghosh S and Kain V, J Nucl Mater 403 (2010) 62.

    Article  CAS  Google Scholar 

  37. Jinlong L and Hongyun L, Appl Surf Sci 280 (2013) 124.

    Article  Google Scholar 

  38. Jinlong L and Hongyun L, Appl Surf Sci 263 (2012) 29.

    Article  Google Scholar 

  39. Ghosh S, Kumar M K and Kain V, Appl Surf Sci 264 (2013) 312.

    Article  CAS  Google Scholar 

  40. Chang L, Volpe L, Wang Y L, Grace Burke M, Maurotto A, Tice D, Lozano-Perez S and Scenini F, Acta Mater 165 (2019) 203.

    Article  CAS  Google Scholar 

  41. Wang S, Hu Y, Fang K, Zhang W and Wang X, Corros Sci 126 (2017) 104.

    Article  CAS  Google Scholar 

  42. Chang L, Mukahiwa K, Volpe L and Scenini F, Corros Sci 186 (2021) 109444.

    Article  CAS  Google Scholar 

  43. Zhong X, Bali S C and Shoji T, Corros Sci 118 (2017) 143.

    Article  CAS  Google Scholar 

  44. Gheno T, Desgranges C and Martinelli L, Corros Sci 173 (2020) 108805.

    Article  CAS  Google Scholar 

  45. Das A, Roychowdhury S and Kain V, J Nucl Mater, Article under review.

  46. ASTM G2M-06, ASTM International (2011).

  47. Ahlawat A and Sathe V G, J Raman Spectrosc 42 (2011) 1087.

    Article  CAS  Google Scholar 

  48. Ming H, Zhang Z, Wang J, Zhu R, Ding J, Wang J, Han E-H and Ke W, Appl Surf Sci 337 (2015) 81.

    Article  CAS  Google Scholar 

  49. Da Cunha Belo M, Walls M, Hakiki N E, Corset J, Picquenard E, Sagon G and Noel D, Corros Sci 40 (1998) 447.

    Article  Google Scholar 

  50. Li M C, Zhang H, Huang R F, Wang S D and Bi H Y, Corros Sci 80 (2014) 96.

    Article  CAS  Google Scholar 

  51. Chen M, Shu J, Xie X and Mao H-K, Geochim Cosmochim Acta 67 (2003) 3937.

    Article  CAS  Google Scholar 

  52. Kim J H and Hwang I S, Nucl Eng Des 235 (2005) 1029.

    Article  CAS  Google Scholar 

  53. McCarty K F and Boehme D R, J Solid State Chem 79 (1989) 19.

    Article  CAS  Google Scholar 

  54. Ortiz-Quiñonez J-L, Pal U and Villanueva M S, ACS Omega 3 (2018) 14986.

    Article  Google Scholar 

  55. Dubey V and Kain V, Mater Manuf Process 33 (2018) 835.

    Article  CAS  Google Scholar 

  56. Guo C, Hu Y, Qian H, Ning J and Xu S, Mater Charact 62 (2011) 148.

    Article  CAS  Google Scholar 

  57. Liu L, Xu J, Xie Z-H and Munroe P, J Mater Chem A 1 (2013) 2064.

    Article  CAS  Google Scholar 

  58. Mohammadi F, Nickchi T, Attar M M and Alfantazi A, Electrochim Acta 56 (2011) 8727.

    Article  CAS  Google Scholar 

  59. Beverskog B, Bojinov, Englund A, Kinnunen P, Laitinen T, Mäkelä K, Saario T and Sirkiä P, Corros Sci 44 (2002) 1901.

    Article  CAS  Google Scholar 

  60. Carranza R M and Alvarez M G, Corros Sci 38 (1996) 909.

    Article  CAS  Google Scholar 

  61. Li Z-y, Cai Z-b, Yang W-j, Shen X-y, Xue C-h, Zhu M-h, Appl Surf Sci 435 (2018) 312.

    Article  CAS  Google Scholar 

  62. Brug G J, van den Eeden A L G, Sluyters-Rehbach M and Sluyters J H, J Electroanal Chem 176 (1984) 275.

    Article  CAS  Google Scholar 

  63. Xiao Q, Jang C, Kim C, Kim H, Chen J and Lee H B, Corros Sci 177 (2020) 108991.

    Article  CAS  Google Scholar 

  64. Feng X, Lu X, Zuo Y, Zhuang N and Chen D, Corros Sci 103 (2016) 223.

    Article  CAS  Google Scholar 

  65. Gui Y, Meng X B, Zheng Z J and Gao Y, Appl Surf Sci 419 (2017) 512.

    Article  CAS  Google Scholar 

  66. Montemor M, Ferreira M G S, Hakiki N E and Da Cunha Belo M, Corros Sci 42 (2000) 1635.

    Article  CAS  Google Scholar 

  67. Marijan D and Gotic M, J Appl Electrochem 32 (2002) 1341.

    Article  CAS  Google Scholar 

  68. Ahn S J and Kwon H S, Electrochem. Acta 49 (2004) 3347.

    Article  CAS  Google Scholar 

  69. Gaben G, Vuillemin B and Oltra R, J Electrochem Soc 151 (2004) B595.

    Article  CAS  Google Scholar 

  70. Majumdar P, Jayaramachandran R and Ganesan S, Appl Therm Eng 25 (2005) 2152.

    Article  CAS  Google Scholar 

  71. Acharyya S G, Khandelwal A, Kain V, Kumar A and Samajdar I, Mater Charact 72 (2012) 68.

    Article  CAS  Google Scholar 

  72. Luo Y R, in Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton (2007).

    Book  Google Scholar 

  73. Pan C, Liu L, Li Y, Wang S and Wang F, Electrochim Acta 56 (2011) 7740.

    Article  CAS  Google Scholar 

  74. Lister D H, Davidson R D and McAlpine E, Corros Sci 27 (1987) 113.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with support and cooperation from Shri Kumar Sourabh (HBNI, MMD, BARC) and Dr. J. B. Singh (MMD, BARC) for FEG-SEM, Shri Alexander Rajath (G&AMD, BARC) for Micro laser—Raman spectroscopy, Shri Saradhi Gumma (MP&CED, BARC) and Dr. Vivekanand Dubey (MP&CED, BARC) for EIS and Mott–Schottky studies, Dr. Vivekanand Dubey (MP&CED, BARC) for GDOES, and Shri Saradhi Gumma (MP&CED, BARC) and Smt. Amrita Mahanti Ghoshal (MP&CED, BARC) for GDOES and 3D optical profilometry. Shri Mahendra Patil (MP&CED, BARC) assisted with the autoclave operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annesha Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Roychowdhury, S. & Kain, V. Evolution of Oxide Film Formed on Machined Type 304L SS in High Temperature High Pressure Demineralised Water. Trans Indian Inst Met 75, 917–930 (2022). https://doi.org/10.1007/s12666-021-02517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02517-x

Keywords

Navigation