Skip to main content

Advertisement

Log in

Revisiting Quasicrystals for the Synthesis of 2D Metals

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Quasicrystals (QCs) are intermetallic materials with long-range ordering but with lack of periodicity. They have attracted much interest due to their interesting structural complexity, unusual physical properties, and varied potential applications. The last four decades of research have demonstrated the existence of different forms of QC composed of several metallic and non-metallic systems, which have already been exploited in several applications. Recently, with the experimental realization of 2D (atomically thin) metals, the potential applications of these structures have significantly increased (such as inflexible electronics, optoelectronics, electrocatalysis, strain sensors, nano-generators, innovative nano-electromechanical systems, and biomedical applications). As a result, high-quality 2D metals and alloys with engineered and tunable properties are in great demand. This review summarizes the recent advances in the synthesis of 2D single and few layered metals and alloys using quasicrystals. These structures present a large number of active sites for hydrogen evolution process catalysis and other functional properties. In this review, we also highlighted the possibility of using QC to synthesize other 2D metals and to explore their physical and chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D.Gratias and J.W. Cahn, Metallic Phase with Long-Range Orientational Order and No Translational Symmetry, Phys. Rev. Lett., 53 (1984)1951-1953.

    Article  CAS  Google Scholar 

  2. K. Chattopadhyay, S. Ranganathan, G.N. Subbanna and N. Thangaraj, Electron Microscopy of Quasi- Crystals in Rapidly Solidified Al-14% Mn Alloys, Scripta Metall., 19 (1985) 767–771.

    Article  CAS  Google Scholar 

  3. K. Chattopadhyay, S. Lele, S. Ranganathan, G.N. Subbanna and N. Thangaraj, Electron microscopy of quasi-crystals and related structures, Curr. Sci., 54 (1985) 895-903.

    CAS  Google Scholar 

  4. N.K. Mukhopadhyay, S. Ranganathan and K. Chattopadhyay, On the short-range order in Al-Mn quasicrystals during low temperature ageing, Philosophical Magazine Letters, 56 (1987) 121-127.

    Article  CAS  Google Scholar 

  5. N.K. Mukhopadhyay, S. Ranganathan and K. Chattopadhyay, Evolution of superlattice order in Al-Mn quasicrystal and its relation to face centred icosahedral quasicrystals, Philosophical Magazine Letters, 60 (1989) 207-211.

    Article  CAS  Google Scholar 

  6. D. Levine and P.J. Steinhardt, Quasicrystals: A New Class of Ordered Structures, Phys. Rev. Lett., 53 (1984) 2477–2480.

    Article  CAS  Google Scholar 

  7. R. Penrose, the role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10 (1974) 266-271.

    Google Scholar 

  8. A.L. Mackay, De nive quinquangula: On the pentagon snowflake. Sov. Phys. Crystallogr. 26 (1981) 517-522.

    Google Scholar 

  9. L. Bendersky, Quasicrystal with One-Dimensional Translational Symmetry and a Tenfold Rotation Axis, Phys Rev Lett, 55 (1985) 1461-1463.

    Article  CAS  Google Scholar 

  10. N. Wang, H. Chen and K.H. Kuo, Two-dimensional quasicrystal witheight-fold rotational symmetry Phys. Rev. Lett. 59 (1987) 1010-1013.

    Article  CAS  Google Scholar 

  11. S. Iwami and T. Ishimasa, Dodecagonal quasicrystal in Mn-based quaternary alloys containing Cr, Ni and Si, Philosophical Magazine Letters, 95, (2015) 229-236.

    Article  CAS  Google Scholar 

  12. K. Chattopadhyay, S. Lele and S. Ranganathan, Vacancy Ordered Phases and One-Dimensional Quasiperiodicity, Acta Metall. 35, (1987) 727-733.

    Article  CAS  Google Scholar 

  13. L.X. He, X.Z. Li, Z. Zhang and K.H. Kuo, One-Dimensional Quasicrystal in Rapidly Solidified Alloys, Phys. Rev. Lett., 61 (1988) 1116-1118.

    Article  CAS  Google Scholar 

  14. N.K. Mukhopadhyay and T.P.Yadav, Some aspects of stability and nanophase formation in quasicrystals during mechanical alloying, Isr. J. Chem., 51 (2011) 1185-1196.

    Article  CAS  Google Scholar 

  15. S. Walter, Z. Kristallog. 219 (2004) 394.

  16. A.P. Tsai, Chem Soc Rev 42, 5352.

  17. K.F. Kelton, Quasicrystals: structure and stability, Int. Mater. Rev, 38 (1993) 105-137.

    Article  CAS  Google Scholar 

  18. J. M. Dubois, Properties- and applications of quasicrystals and complex metallic alloys, Chem Soc Rev, 41 (2012) 6760–6777.

    Article  CAS  Google Scholar 

  19. T.P. Yadav and N.K. Mukhopadhyay, Quasicrystal: a low-frictional novel material, Current Opinion in Chemical Engineering 19 (2018) 163-169.

    Article  Google Scholar 

  20. P.J. Steinhardt, S. Ostlund, The Physics of Quasicrystal (Singapore: World Scientific) 1987.

  21. C. Janot, Quasicrystals: A Primer, OUP Oxford, 2012, ISBN 0199657408, 9780199657407 (427 pages).

  22. T.P. Yadav, O.N. Srivastava, Formation and phase stability of Al based quasicrystals: Quasicrystal (2012) LAP LAMBERT Academic Publishing Germany (January 18, 2012) (page 216).

  23. M. Enrique, Quasicrystals: Fundamentals and Applications CRC Press Taylor & Francis Group, LLC (392 pages) (2020).

  24. N.K. Mukhopadhyay, T.P. Yadav, J Indian Instit Sci (2022).

  25. G.V.S. Sastry, V.V. Rao, P. Ramachandrarao, T.R. Anantharaman, A new quasi-crystalline phase in rapidly solidified Mg4CuAl6, Scripta Metallurgica 20 (2) (1986) 191-193.

    Article  CAS  Google Scholar 

  26. N.K. Mukhopadhyay, G.N. Subbanna, S. Ranganathan and K. Chattopadhyay, An electron microscopic study of quasicrystals in quaternary alloy: Mg32(Al,Zn,Cu)49, Scripta Metallurgica, 20 (1986) 525-228.

    Article  CAS  Google Scholar 

  27. N.K. Mukhopadhyay, K. Chattopadhyay and S. Ranganathan, Synthesis and structural aspects of quasicrystals in Mg-Al-Ag: Mg4Al6Ag, Metallurgical Transactions A, 20 (1989) 805- 812.

    Article  Google Scholar 

  28. Z. Zhang, H.Q. Ye and K.H. Kuo, A new icosahedral phase with m35 symmetry, Philosophical Magazine A, 52 (1985) L49-L52.

    Article  CAS  Google Scholar 

  29. Z. Zhang, K.H. Kuo, Local translational order in the NiTi2 icosahedral quasicrystal, Journal of Microscopy, 146 (1987) 313-321.

    Article  CAS  Google Scholar 

  30. C. Dong, Z. K. Hei, L. B. Wang, Q. H. Song, Y. K .Wu and K. H. Kuo, A new icosahedral quasicrystal in rapidly solidified FeTi2, Scripta Metallurgica, 20 (1986) 1155-1158.

    Article  CAS  Google Scholar 

  31. K.H. Kuo, D.S. Zhou and D. X. Li, Quasi-Crystalline and Frank Kasper Phases in a Rapidly Solidified V41Ni36Si23 Alloy. Philos. Mag. Lett. 55 (1987)33–39.

    Article  CAS  Google Scholar 

  32. L. A. Bendersky and F. S. Biancaniello, TEM observation of icosahedral, new crystalline and glassy phases in rapidly quenched Cd-Cu alloys, Scripta Metallurgica 21 (1987) 531-536.

    Article  CAS  Google Scholar 

  33. J. Sekhar, P. Rao, Trivedi R, Scripta Metallurgica, (1987) 543.

  34. A.P. Tsai, J. Q. Guo, E. Abe, H. Takakura and T. J. Sato, A stable binary quasicrystal, Nature 408 (2000) 537–538.

    Article  CAS  Google Scholar 

  35. A.P. Tsai, Sci Technol Adv Mater 9 (2008) 013008.

  36. L.A. Bendersky and S.D. Ridder, Nucleation behavior of Al–Mn icosahedral phase, Journal of Materials Research, 3 (1986) 405-414.

    Article  Google Scholar 

  37. J.A. Shekhar and T. Rajasekharan, Rapid Pressurization experiments on a liquid Al-Mn alloy, Nature, 320 (1986) 153-155.

    Article  Google Scholar 

  38. B. Dubost, J-M. Lang, M. Tanaka, P. Sainfort and M. Audier, Large AlCuLi single quasicrystals with triacontahedral solidification morphology, Nature, 324 (1986) 48-50.

    Article  CAS  Google Scholar 

  39. S.R. Nishitani, H. Kawaura, K.F. Kobayashi and P.H. Shingu, Growth of quasi-crystals from the supersaturated solid solution, Journal of Crystal Growth, 76 (1986) 209-214.

    Article  CAS  Google Scholar 

  40. N. Tahreen and D.L. Chen, A Critical Review of MgZnY Series Alloys Containing I, W, and LPSO Phases, Advanced Engineering Materials 18 (2016), 1983-2002.

    Article  CAS  Google Scholar 

  41. D.A. Lilienfeld, M. Nastasi, H.H. Johnson, D.G. Ast and J.W. Mayer, Amorphous-to-Quasicrystalline Transformation in the Solid State, Physical Review, 55 (1985)1587-1590.

    CAS  Google Scholar 

  42. Y.E. Ivanov, I.G. Konstanchuk, B.D. Bokhonov and V.V. Boldyrev, Mechanochemical synthesis of icosahedral phases in Mg-Zn-Al and Mg-Cu-Al alloys, Reactivity of solids, 7, (1989) 167-172.

    Article  CAS  Google Scholar 

  43. T.P. Yadav, D. Singh, R.R. Shahi, M.A. Shaz, R.S. Tiwari and O.N. Srivastava, Synthesis of quasicrystalline film of Al-Ga-Pd-Mn alloy, Thin Solid Films 534 (2013) 265-269.

    Article  CAS  Google Scholar 

  44. N.K. Mukhopadhyay and P. Paufler, Micro- and nanoindentation techniques for mechanical characterization of Materials, International Materials Reviews 51 (2006) 209-245

    Article  CAS  Google Scholar 

  45. N.K. Mukhopadhyay, F. Ali, S. Scudino, M. Samadi Khoshkhoo, M. Stoica, V. C. Srivastava, V. Uhlenwinkel, G. Vaughan, C. Suryanarayana, and J. Eckert, Grain size softening effect in Al62.5Cu25Fe12.5 nanoquasicrystals, Applied Physics Letters, 103 (2013) 2019141-2019145.

    Article  CAS  Google Scholar 

  46. J.M. Dubois, New prospects from potential applications of quasicrystalline materials. Mater Sci Eng, 4-9 (2000) 294–296.

    Google Scholar 

  47. D.V. Louzguine-Luzgin and A. Inoue, Formation and Properties of Quasicrystals, Annu. Rev. Mater. Res. 38 (2008) 403–23.

    Article  CAS  Google Scholar 

  48. B.P. Ngoc, C. Geantet, M. Aouine, G. Bergeret, S. Raffy and S. Marlin, Quasicrystal derived catalyst for steam reforming of methanol. Int J Hydrogen Energy, 33, (2008) 1000-1007.

    Article  CAS  Google Scholar 

  49. S. Kameoka, T. Tanabe and A.P. Tsai, Al-Cu-Fe quasicrystals for steam reforming of methanol: a new form of copper catalysts, Catal Today, 93 (2004) 23-26.

    Article  CAS  Google Scholar 

  50. T. Tanabe, S. Kameoka and A.P. Tsai, Microstructure of leached Al-Cu-Fe quasicrystal with high catalytic performance for steam reforming of methanol, Appl. Catal. A: General, 384 (2010) 241-51.

    Article  CAS  Google Scholar 

  51. T. Tanabe, S. Kameoka and A.P. Tsai, Evolution of microstructure induced by calcination in leached Al-Cu-Fe quasicrystal and its effects on catalytic activity, J Mater Sci, 46, (2011) 2242-2250.

    Article  CAS  Google Scholar 

  52. S.K. Pandey, A. Bhatnagar, S.S. Mishra, T.P. Yadav, M.A. Shaz and O.N. Srivastava, Curious Catalytic Characteristics of Al–Cu–Fe Quasicrystal for De/Rehydrogenation of MgH2, The Journal of Physical Chemistry C 121 (45) (2017) 24936-24944.

    Article  CAS  Google Scholar 

  53. S.S. Mishra, T.P. Yadav, N.K. Mukhopadhyay and O.N. Srivastava, Synthesis of fine skeletal structure on Al–Cu–Co decagonal quasicrystals for hydrogen production through steam reforming of methanol, International Journal of Hydrogen Energy, 45 (2020) 24491-24501.

    Article  CAS  Google Scholar 

  54. S.S. Mishra, T.P. Yadav, S.P. Singh, A.K. Singh, M.A.Shaz, N.K. Mukhopadhyay, O.N. Srivastava, Evolution of porous structure on Al–Cu–Fe quasicrystalline alloy surface and its catalytic activities, Journal of Alloys and Compounds 834 (2020) 155162.

    Article  CAS  Google Scholar 

  55. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science 306 (2004) 666–669.

    Article  CAS  Google Scholar 

  56. P.M. Ajayan, P. Kim and K. Banerjee, Two-dimensional van der Waals materials, Citation: Physics Today 69 (2016) 38.

    Article  CAS  Google Scholar 

  57. P. Vogt, P.D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, G. L. Lay, Phy Rev Lett 108 (2012) 155501.

  58. A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang and D.Akinwande, Buckled two-dimensional Xene sheets, Nature Materials 16 (2017) 163-169.

    Article  CAS  Google Scholar 

  59. L. Peng, P. Xiong, L. Ma, Y. Yuan, Y. Zhu, D. Chen, X. Luo, J. Lu, K. Amine and G. Yu, Holey two-dimensional transition metal oxide nanosheets for efficient energy storage, Nature Communications 8 (2017) 15139.

    Article  Google Scholar 

  60. L. Wang, P. Hu, Y. Long, Z. Liu and X. He, Recent advances in ternary two-dimensional materials: synthesis, properties and applications, J. Mater. Chem. A, 5 (2017) 22855.

    Article  CAS  Google Scholar 

  61. H. C. Ner, K.T. Winther, F. S. Hage, K.S. Thygesen, L. Houben, C. Backes, J.N. Coleman, Q. M. Ramasse, V. Nicolosi, Probing the local nature of excitons and plasmons in few-layer MoS2, npj, 2D Materials and Applications 1 (2017) 2.

    Article  Google Scholar 

  62. Y. Gong, B. Li, G. Ye, S. Yang, X. Zou, S. Lei, Z. Jin, E. Bianco, S. Vinod, B. I. Yakobson, J. Lou, R. Vajtai, W. Zhou, and P. M. Ajayan, Direct growth of MoS2 single crystals on polyimide substrates, 2D Mater. 4 (2017) 021028.

    Article  CAS  Google Scholar 

  63. D. Deng, K. S. Novoselov, Q. Fu, N. Zheng, Z. Tian and X. Bao, Catalysis with two-dimensional materials and their heterostructures, Nature Nanotechnology 11 (2016) 218-230.

    Article  CAS  Google Scholar 

  64. X. Wang, Y. Gong, G. Shi, W.L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B.K. Tay, P.M. Ajayan, Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2. ACS Nano 8 (2014) 5125−5131.

    Article  CAS  Google Scholar 

  65. D. Pacilé, J.C. Meyer, Ç. Ö Girit, and A. Zettl, The TwoDimensional Phase of Boron Nitride: Few-Atomic-Layer Sheets and Suspended Membranes. Appl. Phys. Lett. 92 (2008) 133107.

    Article  CAS  Google Scholar 

  66. K. Zhang, M. Di, L. Fu, Y. Deng, Y. Du, N. Tang, Enhancing the Magnetism of 2D Carbide MXene Ti3C2Tx by H2 Annealing. Carbon 157 (2020) 90−96.

    Article  CAS  Google Scholar 

  67. A.H. Woomer, T.W. Farnsworth, J. Hu, R.A. Wells, C.L. Donley, S.C. Warren, Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy ACS Nano, 9 (2015) 8869−8884.

    Article  CAS  Google Scholar 

  68. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene Field-Effect Transistors Operating at Room Temperature. Nat. Nanotechnol., 10 (2015) 227−231.

    Article  CAS  Google Scholar 

  69. M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay, Germanene: A Novel Two-Dimensional Germanium Allotrope Akin to Graphene and Silicene. New J. Phys. 16 (2014) 095002.

    Article  CAS  Google Scholar 

  70. P.R. Reshma, Anees Pazhedath, Shyam Kanta Sinha, Arup Dasgupta, Ganesan Karuppiah, Arun K. Prasad, and Sandip Dhara, Electronic and Vibrational Decoupling in Chemically Exfoliated Bilayer Thin Two-Dimensional V2O5, J. Phys. Chem. Lett., 12 (2021) 9821–9829

    Article  CAS  Google Scholar 

  71. L. Cai, C. J. McClellan, A.L. Koh, H. Li, E. Yalon, E. Pop, X. Zheng, Nano Lett, 17 (2017) 385.

  72. Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M.S. Park, L. Jiang, J.H. Kim, S. X. Dou, Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets, Nat. Commun, 5 (2014) 3813.

    Article  CAS  Google Scholar 

  73. V. Kochat, A. Samanta, Y. Zhang, S. Bhowmick, P. Manimunda, S. A. S. Asif, A. S. Stender, R. Vajtai, A. K. Singh, C.S. Tiwary, P.M. Ajayan, Atomically thin gallium layers from solid-melt exfoliation. Sci. Adv. 4 (2018) 1701373.

    Article  CAS  Google Scholar 

  74. T. Wang, M. Park, Q. Yu, J. Zhang, Y. Yang, Stability and synthesis of 2D metals and alloys: a review, Materials Today Advances 8 (2020) 100092.

    Article  Google Scholar 

  75. T.P. Yadav, C.F. Woellner, S.K. Sinha, T. Sharifi, A. Apte, N.K. Mukhopadhyay, O.N. Srivastava, R.Vajtai, D.S.Galvao, C.S. Tiwary, P.M. Ajayan, Liquid exfoliation of icosahedral quasicrystals, Advanced Functional Materials 28, (2018) 1801181(8).

    Article  CAS  Google Scholar 

  76. T.P. Yadav, C.F.Woellner, T. Sharifi, S.K. Sinha, Lu-Lu Qu, A.Apte, N.K. Mukhopadhyay, O.N. Srivastava, R.Vajtai, D.S.Galvão, C.S. Tiwary, P. M. Ajayan, Extraction of Two-Dimensional Aluminum Alloys from Decagonal Quasicrystals, ACS Nano 14, (2020) 7435–7443.

    Article  CAS  Google Scholar 

  77. K. Edagawa, S. Takeuchi, Elasticity Dislocations and their Motion in Quaicrystals, Dislocations in Solids, 1st Edition Elsevier Science, 28th March 2007 Editors: Frank N, John H, Vol. 13, 2007 Chapter 76, 365, Hardcover.

  78. J. W. Christian and S. Mahajan, Deformation twinning, Progress in Materials Science 39 (1995) 1-157.

    Article  Google Scholar 

  79. P. Schall, M. Feuerbacher, and K. Urban, Plastic deformation of decagonal Al-Ni-Co single quasicrystals, Materials Science and Engineering A 309-310 (2001) 548-551.

    Article  Google Scholar 

  80. H. Klein, M. Feuerbacher, P. Schall, and K. Urban, Novel Type of Dislocation in an Al-d-Mn Quasicrystal Approximant, Phys. Rev. Lett. 82 (1999) 3468.

    Article  CAS  Google Scholar 

  81. Y. Zou, P. Kuczera, W. Steurer, and R. Spolenak, Disappearance of plastic anisotropy in decagonal quasicrystals at small scales and room temperature, Extreme Mechanics Letters 8 (2016) 229-234.

    Article  Google Scholar 

  82. H.-R. Trebi, R. Mikulla, J. Roth, Motion of dislocations in two-dimensional decagonal quasicrystals, Journal of Non-Crystalline Solids,153–154 (1993) 272-275.

    Article  Google Scholar 

  83. S. Jazbec, S. Vrtnik, Z. Jaglicˇic´, S. Kashimoto, J. Ivkov, P. Popcˇevic´, A. Smontara, H. Kim, J. Kim, J. Dolinšek, J Alloys Comp 586 (2014) 343.

  84. R. Wang, W. Yang, J. Gui, and K. Urban, Dislocation mechanism of high-temperature plastic deformation of AlCuFe and AlPdMn icosahedral quasicrystals, Materials Science and Engineering: A 294-296 (2000) 742-747.

    Article  Google Scholar 

  85. M. Kleman and Ch Sommers, Dislocations in a penrose lattice, Acta Metallurgica 39 (1991) 287-293.

    Article  Google Scholar 

  86. A. Ramakrishnan, K. K. Kesavan, S. Chavhan, M. R. Nagar, J. H. Jou, S. W. Chen, H. W. Hsiao, J. M. Zuo, L. Y. Hung, Liquid Exfoliation of Decagonal Quasicrystals and Its Light Out-Coupling Performance in Organic Light-Emitting Devices, Adv. Photonics Res. 1 (2020)2000042.

    Article  Google Scholar 

Download references

Acknowledgements

The research of TPY is supported by the University Grants Commission (UGC) of India under Raman Fellowship (Grant No. F5-154/2016(IC)) under Indo-US 21st Century Knowledge Initiative. DSG acknowledges support from the Center for Computational Engineering & Sciences (CCES), Brazil, at Unicamp for financial support through the FAPESP/CEPID Grant 2013/08293-7 and the Brazilian agencies CNPq and CAPES. P.K. and C.S.T. acknowledge AOARD (Asian Office of Aerospace Research and Development) grant no. FA2386-19-1-4039 and Grant No. FA2386-21-1-4014. C.S.T. acknowledges Ramanujan fellowship and core research grant of SERB, India. CST acknowledges the funding received from STARS project by MHRD, India..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra SekharTiwary.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, T.P., Kumbhakar, P., Mukhopadhyay, N.K. et al. Revisiting Quasicrystals for the Synthesis of 2D Metals. Trans Indian Inst Met 75, 1093–1100 (2022). https://doi.org/10.1007/s12666-021-02506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02506-0

Navigation