Skip to main content
Log in

Effects of Metal and Inorganic Additives on the Tribological Performances of Nickel-Based Composites with Rice Husk Ceramic Particles

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Rice husk ceramic (RHC) can be used as a reinforcing agent in metal matrix composites (MMC) to improve the tribological properties because of their remarkable mechanical and tribological properties. This research scrutinizes the role of RHC to enhance tribological properties of Ni-MMC (Nickel metal matrix composite). Ni-MMC with additives RHC, Al, Cu, MoS2, and graphite in different content were prepared by powder metallurgy method. The wear and friction mechanism of Ni-MMC was investigated using a ball-disk tribometer at room temperature. SEM/EDS and optical microscope were used to examine the wear properties, distribution of reinforcement, and micro structural phases, respectively. Results indicated that the addition of RHC particles can strengthen the anti-wear and friction reduction properties of Ni-MMC. The addition of 3 wt% RHC resulted in the lowest value for the coefficient of friction and wear rate. Further expansion of MoS2 and graphite along 3 wt% RHC, both the wear rate and coefficient of friction all decrease. At the same time, the value depends on the content of elements like aluminum and copper in MMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agrawal A, and Mirzaeifar R, Surf. Sci. 688 (2019) 1.

    Article  CAS  Google Scholar 

  2. Algul H, Tokur M, Ozcan S, Uysal M, Cetinkaya T, and Akbulut A. H, Appl. Surf. Sci. 359 (2015) 340.

    Article  CAS  Google Scholar 

  3. Baur W, Ullmann's Encyclopedia Industrial Chemistry, Weinheim, Germany. (2009).

  4. Chawla N, and Chawla K, JOM. 58 (2006) 67.

    Article  CAS  Google Scholar 

  5. Rosaa L C, Santorb C G, Lovatob A, and Rosac C S, Cleaner Prod. 104 (2015) 90.

    Article  Google Scholar 

  6. Costa C E, and Velasco F, J, Mater. Process. Technol. 92 (1999) 66.

    Article  Google Scholar 

  7. Hamidrez T B, Hwang M J, Scharf T W, Tiley J S, and Hong S, J., Alloys Compd. 646 (2015) 135.

    Article  Google Scholar 

  8. Hu E, Hu K, Dearn K, Hu X, Xu Y, Yu D, Gu H, and Tang Y, Tribol. Int. 103 (2016) 139.

    Article  CAS  Google Scholar 

  9. Mishra P, Mishra P, and Rana R S, Mater. Today: Proc. 5 (2018) 6018.

    Article  CAS  Google Scholar 

  10. Kumar A, Raj R, and Kailas V S, Mater. Des. 85 (2015) 626.

    Article  Google Scholar 

  11. Subrahmanyam A P S V R, J M, and G. Naresh, Int. J. of Advanced Science and Technol., 94 (2016) 49.

    Article  Google Scholar 

  12. Chandel R, N S, and Bansal S A, Emergent Mater. (2021)

  13. Zhang Y, A E, and Li. Bingxi, American Journal of Applied Sciences. 9 (2012) 1757.

    Article  Google Scholar 

  14. I.B. Gaga Partama, T.G. Belawa Yadnya, I.G.N.G. Bidura, A.A.A. Sri Trisnadewi, and W. Sayang Yupardhi, Int. J. Poultry Sci. 18 (2019) 69.

  15. F. Rozploch, J Patyk, and J Stankowski, Acta Physica Polonica. 112 (2007) 557.

    Article  CAS  Google Scholar 

  16. Kumaraswamy J, Kumar V, and Purushotham G, Mater. Today: Proc. 37 (2021) 2027.

    Article  CAS  Google Scholar 

  17. Lei J, Shi C, Zhou S, Gu Z, and Zhang L, Surf. Coat. Technol. 334 (2018) 274.

    Article  CAS  Google Scholar 

  18. Marenych O, and Kostryzhev A, Metals. 10(2020)1358.

    Article  CAS  Google Scholar 

  19. Kamyar S, Hamim S U, and Akbari M K, Composites. 92 (2017) 70.

    Article  Google Scholar 

  20. Mohammad R, and Vazirisereshk A M, Lubricants 7 (2019) 57.

    Article  Google Scholar 

  21. Olga Y, and Kurapova I V, J. Alloys Compd. 835 (2014) 1.

    Google Scholar 

  22. Omer G, and Nihal B, J. Mater. Res. Technol. 9 (2020) 6808.

    Article  Google Scholar 

  23. Podrabinnik P, Gershman I, Mironov A, Kuznetsova E, and Peretyagin P, Lubricants. 8(2020)24.

    Article  Google Scholar 

  24. Chou R, Herna´ndez Battez A, and Cabello J J, Tribol. Int. 43 (2010) 2327.

    Article  CAS  Google Scholar 

  25. Zhen J, Cheng J, and Zhu S, Tribol. Int. 110 (2017) 52.

    Article  CAS  Google Scholar 

  26. Sang K, and Jin Z, Tribol. Int. 34 (2001) 315.

    Article  CAS  Google Scholar 

  27. Zhen J, Cheng J, and Li M, Tribol. Int. 109 (2016) 174.

    Article  Google Scholar 

  28. Saravanan S D, and Kumar M S, Procedia Eng. 64 (2013) 1505.

    Article  CAS  Google Scholar 

  29. Surappa M K, Sadhana. 28(2003)319.

    Article  CAS  Google Scholar 

  30. Yin J, Zhang H, Bai K, Xiong X, Zhang H, and Ma D. Mater. Characte. 168 (2020) 110551.

  31. Cheng L, Yu D, Hu E, Tang Y, and Hu K. Carbon Letters, 26 (2018) 51.

    Google Scholar 

  32. Wang H, Xu B, and Liu J, Science Press (2012).

  33. Xu J, Zhao L, Deng X, and Yu H, Mater. Des. 27 (2006) 1152.

    Article  CAS  Google Scholar 

  34. Zhang H, Zhang N, and Fang F, Ultrason. Sonochem. 62 (2019) 104858.

  35. Soltani N, Bahrami A, Pech-Canul M I, and González L A, Chem. Eng. 264 (2015) 899.

    Article  CAS  Google Scholar 

  36. Sharma P, Khanduja D, and Sharma S, J. Reinf. Plast. Compos. 33 (2014) 1.

    Article  Google Scholar 

  37. Zhou H, Yao P P, Xiao Y, Fan K, Zhang Z, Gong T, Zhao L, Deng M, Liu C, and Ling P, Tribol. Int. 132 (2018) 199.

    Article  Google Scholar 

  38. Zin V, Agresti F, Barison S, Colla L, Gondolini A, and Fabrizio M. IEEE Trans. Nanotechnol. 12 (2013) 751.

    Article  CAS  Google Scholar 

  39. Chen Y, Hu E, Hua Z, Wang J, Subedi A, Hu K, and Hu X, Nanomaterials 11 (2021).

Download references

Acknowledgements

The authors wish to express their thanks to Mr Zixiang Li for their assistance in using the SEM/EDS and HRTEM images. The financial support received from National Nature foundation of China (52075144), Anhui Province Natural Science Foundation of China (2008085ME167, 2008085QE199), Anhui University Outstanding Young Talents Programs (gxyqZD2020051) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enzhu Hu or Jianhua Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subedi, A., Hu, E., Guo, J. et al. Effects of Metal and Inorganic Additives on the Tribological Performances of Nickel-Based Composites with Rice Husk Ceramic Particles. Trans Indian Inst Met 75, 1211–1231 (2022). https://doi.org/10.1007/s12666-021-02466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02466-5

Keywords

Navigation