Skip to main content
Log in

Role of Cryogenic Cycling Rejuvenation on Flow Behavior of ZrCuAlNiAg Metallic Glass at Relaxation Temperature

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, the effects of cryogenic cycling rejuvenation on the flow behavior of ZrCuAlNiAg metallic glass (MG) in the range of relaxation region from 0.7 up to 0.9 glass transition temperature (Tg) were investigated. For this purpose, nanoindentation and strain-rate jump tests were carried out to show the strain response of glassy alloy. According to the jump test, the increase in applied temperature leads to the rise in induced strain in both of as-cast and rejuvenated samples. It was also uncovered that the rejuvenated sample is sensitive to the higher strain rates leading to the significant overshoot in the flow stresses. In addition, the nanoindentation results indicated that the loading process induced a significant anelastic strain in the rejuvenated sample at 0.9Tg, demonstrating the possible formation and percolation of shear transformation zones (STZs) in the rejuvenated amorphous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Liu, Z. Chen, J. Mo, M. Wang, Y. Zhang, W. Yang, Brittle-to-ductile transition in monatomic Tantalum nanoporous metallic glass, J. Non. Cryst. Solids. 506 (2019) 6–13. https://doi.org/10.1016/j.jnoncrysol.2018.12.004.

    Article  CAS  Google Scholar 

  2. M. Singh, M. Ozawa, L. Berthier, Brittle yielding of amorphous solids at finite shear rates, Phys. Rev. Mater. 4 (2020) 25603. https://doi.org/10.1103/PhysRevMaterials.4.025603.

    Article  CAS  Google Scholar 

  3. X. Lin, Y. Zhang, G. Yang, X. Gao, Q. Hu, J. Yu, L. Wei, W. Huang, Microstructure and compressive/tensile characteristic of large size Zr-based bulk metallic glass prepared by laser solid forming, J. Mater. Sci. Technol. 35 (2019) 328–335. https://doi.org/10.1016/j.jmst.2018.10.033.

    Article  Google Scholar 

  4. S. Li, J.C. Zhang, Z.D. Sha, Mechanical behavior of metallic glasses with pressure-promoted thermal rejuvenation, J. Alloys Compd. 848 (2020) 156597. https://doi.org/10.1016/j.jallcom.2020.156597.

    Article  CAS  Google Scholar 

  5. G. Ding, C. Li, A. Zaccone, W.H. Wang, H.C. Lei, F. Jiang, Z. Ling, M.Q. Jiang, Ultrafast extreme rejuvenation of metallic glasses by shock compression, Sci. Adv. 5 (2019) eaaw6249. https://doi.org/10.1126/sciadv.aaw6249.

    Article  CAS  Google Scholar 

  6. Z.H. Mahmoud, H. Barazandeh, S.M. Mostafavi, K. Ershov, A. Goncharov, A.S. Kuznetsov, O.D. Kravchenko, Y. Zhu, Identification of rejuvenation and relaxation regions in a Zr-based metallic glass induced by laser shock peening, J. Mater. Res. Technol. 11 (2021) 2015–2020. https://doi.org/10.1016/j.jmrt.2021.02.025.

    Article  CAS  Google Scholar 

  7. Q. Sun, D.M. Miskovic, H. Kong, M. Ferry, Transition from relaxation to rejuvenation in ultrastable metallic glass driven by annealing, Appl. Surf. Sci. 546 (2021) 149048. https://doi.org/10.1016/j.apsusc.2021.149048.

    Article  CAS  Google Scholar 

  8. A.J. Vyas, G.P. Nathwani, A.I. Patel, N.K. Patel, A.B. Patel, Validated stability indicating RP-HPLC DAD method for simultaneous determination of amitriptyline hydrochloride and pregabalin in presence of stress degradation products in tablet dosage form, Chem. Methodol. 3 (2019) 494–508.

    CAS  Google Scholar 

  9. M. Samavatian, R. Gholamipour, A.A. Amadeh, S. Mirdamadi, Role of tensile elastostatic loading on atomic structure and mechanical properties of Zr55Cu30Ni5Al10 bulk metallic glass, Mater. Sci. Eng. A. 753 (2019) 218–223. https://doi.org/10.1016/j.msea.2019.03.058.

    Article  CAS  Google Scholar 

  10. N. V Priezjev, Accelerated rejuvenation in metallic glasses subjected to elastostatic compression along alternating directions, J. Non. Cryst. Solids. 556 (2021) 120562. https://doi.org/10.1016/j.jnoncrysol.2020.120562.

    Article  CAS  Google Scholar 

  11. S. V Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D. V Louzguine-Luzgin, M.A. Carpenter, A.L. Greer, Rejuvenation of metallic glasses by non-affine thermal strain, Nature. 524 (2015) 200–203. https://doi.org/10.1038/nature14674.

    Article  CAS  Google Scholar 

  12. P. Gong, G. Yin, Z. Jamili-Shirvan, H. Ding, X. Wang, J. Jin, Influence of deep cryogenic cycling on the rejuvenation and plasticization of TiZrHfBeCu high-entropy bulk metallic glass, Mater. Sci. Eng. A. 797 (2020) 140078. https://doi.org/10.1016/j.msea.2020.140078.

    Article  CAS  Google Scholar 

  13. W. Zhang, Q.C. Xiang, C.Y. Ma, Y.L. Ren, K.Q. Qiu, Relaxation-to-rejuvenation transition of a Ce-based metallic glass by quenching/cryogenic treatment performed at sub-Tg, J. Alloys Compd. 825 (2020) 153997. https://doi.org/10.1016/j.jallcom.2020.153997.

    Article  CAS  Google Scholar 

  14. W. Guo, J. Saida, M. Zhao, S. Lü, S. Wu, Rejuvenation of Zr-based bulk metallic glass matrix composite upon deep cryogenic cycling, Mater. Lett. 247 (2019) 135–138. https://doi.org/10.1016/j.matlet.2019.03.117.

    Article  CAS  Google Scholar 

  15. S. Sohrabi, M.C. Ri, H.Y. Jiang, L. Gu, P. Wen, Y.H. Sun, W.H. Wang, Prominent role of chemical heterogeneity on cryogenic rejuvenation and thermomechanical properties of La–Al–Ni metallic glass, Intermetallics. 111 (2019) 106497. https://doi.org/10.1016/j.intermet.2019.106497.

    Article  CAS  Google Scholar 

  16. W. Guo, J. Saida, M. Zhao, S. Lü, S. Wu, Thermal Rejuvenation of an Mg-Based Metallic Glass, Metall. Mater. Trans. A. 50 (2019) 1125–1129. https://doi.org/10.1007/s11661-018-5062-9.

    Article  CAS  Google Scholar 

  17. W. Guo, Y. Shao, J. Saida, M. Zhao, S. Lü, S. Wu, Rejuvenation and plasticization of Zr-based bulk metallic glass with various Ta content upon deep cryogenic cycling, J. Alloys Compd. 795 (2019) 314–318. https://doi.org/10.1016/j.jallcom.2019.04.340.

    Article  CAS  Google Scholar 

  18. W. Guo, J. Saida, M. Zhao, S. Lü, S. Wu, Unconspicuous rejuvenation of a Pd-based metallic glass upon deep cryogenic cycling treatment, Mater. Sci. Eng. A. 759 (2019) 59–64. https://doi.org/10.1016/j.msea.2019.05.019.

    Article  CAS  Google Scholar 

  19. Z. Liu, P. Huang, F. Wang, The correlation between β relaxation and shear transformation zone in LaNiAl bulk metallic glasses: The effect of cryogenic thermal cycling treatment, J. Alloys Compd. 865 (2021) 158993. https://doi.org/10.1016/j.jallcom.2021.158993.

    Article  CAS  Google Scholar 

  20. P. Ross, S. Küchemann, P.M. Derlet, H. Yu, W. Arnold, P. Liaw, K. Samwer, R. Maaß, Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass, Acta Mater. 138 (2017) 111–118. https://doi.org/10.1016/j.actamat.2017.07.043.

    Article  CAS  Google Scholar 

  21. M. Samavatian, R. Gholamipour, A.A. Amadeh, S. Mirdamadi, Extra rejuvenation of Zr55Cu30Al10Ni5 bulk metallic glass using elastostatic loading and cryothermal treatment interaction, J. Non. Cryst. Solids. 506 (2019) 39–45. https://doi.org/10.1016/j.jnoncrysol.2018.12.007.

    Article  CAS  Google Scholar 

  22. M. Samavatian, R. Gholamipour, A.A. Amadeh, S. Mirdamadi, Correlation Between Plasticity and Atomic Structure Evolution of a Rejuvenated Bulk Metallic Glass, Metall. Mater. Trans. A. 50 (2019) 4743–4749. https://doi.org/10.1007/s11661-019-05391-x.

    Article  CAS  Google Scholar 

  23. N. V Priezjev, The effect of cryogenic thermal cycling on aging, rejuvenation, and mechanical properties of metallic glasses, J. Non. Cryst. Solids. 503–504 (2019) 131–138. https://doi.org/10.1016/j.jnoncrysol.2018.09.041.

    Article  CAS  Google Scholar 

  24. C.M. Meylan, F. Papparotto, S. Nachum, J. Orava, M. Miglierini, V. Basykh, J. Ferenc, T. Kulik, A.L. Greer, Stimulation of shear-transformation zones in metallic glasses by cryogenic thermal cycling, J. Non. Cryst. Solids. 548 (2020) 120299. https://doi.org/10.1016/j.jnoncrysol.2020.120299.

    Article  CAS  Google Scholar 

  25. B.S. Li, S. Xie, J.J. Kruzic, Toughness enhancement and heterogeneous softening of a cryogenically cycled Zr–Cu–Ni–Al–Nb bulk metallic glass, Acta Mater. 176 (2019) 278–288. https://doi.org/10.1016/j.actamat.2019.07.012.

    Article  CAS  Google Scholar 

  26. J. Ketkaew, R. Yamada, H. Wang, D. Kuldinow, B.S. Schroers, W. Dmowski, T. Egami, J. Schroers, The effect of thermal cycling on the fracture toughness of metallic glasses, Acta Mater. 184 (2020) 100–108. https://doi.org/10.1016/j.actamat.2019.11.046.

    Article  CAS  Google Scholar 

  27. W. Guo, R. Yamada, J. Saida, S. Lü, S. Wu, Various Rejuvenation Behaviors of Zr-Based Metallic Glass by Cryogenic Cycling Treatment with Different Casting Temperatures, Nanoscale Res. Lett. 13 (2018) 398. https://doi.org/10.1186/s11671-018-2816-7.

    Article  CAS  Google Scholar 

  28. W. Song, X. Meng, Y. Wu, D. Cao, H. Wang, X. Liu, X. Wang, Z. Lu, Improving plasticity of the Zr46Cu46Al8 bulk metallic glass via thermal rejuvenation, Sci. Bull. 63 (2018) 840–844. https://doi.org/10.1016/j.scib.2018.04.021.

    Article  CAS  Google Scholar 

  29. W. Guo, R. Yamada, J. Saida, Rejuvenation and plasticization of metallic glass by deep cryogenic cycling treatment, Intermetallics. 93 (2018) 141–147. https://doi.org/10.1016/j.intermet.2017.11.015.

    Article  CAS  Google Scholar 

  30. T.J. Lei, L.R. DaCosta, M. Liu, W.H. Wang, Y.H. Sun, A.L. Greer, M. Atzmon, Microscopic characterization of structural relaxation and cryogenic rejuvenation in metallic glasses, Acta Mater. 164 (2019) 165–170. https://doi.org/10.1016/j.actamat.2018.10.036.

    Article  CAS  Google Scholar 

  31. Z.F. Yao, J.C. Qiao, J.M. Pelletier, Y. Yao, Effect of Zener-Hollomon parameter on the flow behavior of Zr-based metallic glass, J. Alloys Compd. 819 (2020) 152987. https://doi.org/10.1016/j.jallcom.2019.152987.

    Article  CAS  Google Scholar 

  32. B. Shi, Y. Xu, C. Li, W. Jia, Z. Li, J. Li, Evolution of free volume and shear band intersections and its effect on hardness of deformed Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass, J. Alloys Compd. 669 (2016) 167–176. https://doi.org/10.1016/j.jallcom.2016.01.239.

    Article  CAS  Google Scholar 

  33. J.C. Qiao, J.M. Pelletier, J.J. Blandin, S. Gravier, High temperature deformation in a lanthanum based bulk metallic glass showing a pronounced secondary relaxation, Mater. Sci. Eng. A. 586 (2013) 57–61. https://doi.org/10.1016/j.msea.2013.07.080.

    Article  CAS  Google Scholar 

  34. M. Bletry, P. Guyot, J.J. Blandin, J.L. Soubeyroux, Free volume model: High-temperature deformation of a Zr-based bulk metallic glass, Acta Mater. 54 (2006) 1257–1263. https://doi.org/10.1016/j.actamat.2005.10.054.

    Article  CAS  Google Scholar 

  35. Z.F. Yao, J.C. Qiao, J.M. Pelletier, Y. Yao, High temperature deformation behaviors of the Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass, J. Mater. Sci. 51 (2016) 4079–4087. https://doi.org/10.1007/s10853-016-9729-6.

    Article  CAS  Google Scholar 

  36. J.C. Qiao, J.M. Pelletier, Enthalpy relaxation in Cu46Zr45Al7Y2 and Zr55Cu30Ni5Al10 bulk metallic glasses by differential scanning calorimetry (DSC), Intermetallics. 19 (2011) 9–18. https://doi.org/10.1016/j.intermet.2010.08.042.

    Article  CAS  Google Scholar 

  37. Y.J. Duan, D.S. Yang, J.C. Qiao, D. Crespo, J.M. Pelletier, L. Li, K. Gao, T. Zhang, Relaxation of internal friction and shear viscosity in Zr57Nb5Al10Cu15.4Ni12.6 metallic glass, Intermetallics. 124 (2020) 106846. https://doi.org/10.1016/j.intermet.2020.106846.

    Article  CAS  Google Scholar 

  38. I.F. Ghazi, I.M. Hashim, A. Surendar, N.S. Tuguz, A.M. Aljeboree, A.F. Alkaim, N. Geetha, Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures, Chinese Phys. B. 30 (2021) 26401.

    Article  CAS  Google Scholar 

  39. R. Zhao, H.Y. Jiang, P. Luo, L.Q. Shen, P. Wen, Y.H. Sun, H.Y. Bai, W.H. Wang, Reversible and irreversible \ensuremath{\beta}-relaxations in metallic glasses, Phys. Rev. B. 101 (2020) 94203. https://doi.org/10.1103/PhysRevB.101.094203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marischa Elveny or Mahander Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tjahjono, T., Elveny, M., Ibrahim, O.a. et al. Role of Cryogenic Cycling Rejuvenation on Flow Behavior of ZrCuAlNiAg Metallic Glass at Relaxation Temperature. Trans Indian Inst Met 74, 3241–3247 (2021). https://doi.org/10.1007/s12666-021-02395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02395-3

Keywords

Navigation