Skip to main content
Log in

Optimization of Friction Stir Process Parameters for Micro-Hardness and Wear Characteristics of Silicon Carbide-Reinforced Al-7075 Surface Composite

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Friction stir processing is a newly emerged manufacturing method for modifying the surface of materials by localized plastic deformation for enhancing their surface characteristics. This research focuses on the optimization of process parameters for silicon carbide-reinforced 7075 aluminum alloy surface composite produced by friction stir processing. For placing silicon carbide particles, an array of 2 × 2 mm blind holes of size 2 mm with a spacing of 4 mm was machined on the AA7075 base plate. A tool with a square pin of 6 mm size having a shoulder diameter of 25 mm was utilized for the fabrication of composites. Process parameters such as tool rotational speed, travel speed and tilt angle were selected in this study and the effects of these parameters on micro-hardness and wear properties were analyzed. These parameters were varied in four levels and surface composites were manufactured according to the Taguchi’s L16 experiment. Optimization of process parameters for enhancing the micro-hardness and wear resistance was performed with grey relational analysis. Experimental results showed that the micro-hardness and wear rate of the composites were most significantly affected by tool travel speed followed by the tool rotation and tilt angle, respectively. Both responses were optimized when the AA7075/SiC surface composite was manufactured with 1120 rpm as tool rotational speed, 50 mm/min as tool travel speed and 3° as tilt angle. The surface composite developed in this research work can be used as a viable alternative material for applications that require superior surface characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heinz A, Haszler A, Keidel C. Recent developments in aluminum alloys for aerospace applications [J]. Materials Science and Engineering A, 2000, 280(1): 102−107.

    Article  Google Scholar 

  2. Dhanasekaran, S.; Sunilraj, S.; Ramya, G. SiC and Al2O3 reinforced aluminum metal matrix composites for heavy vehicle clutch applications. Trans. Indian Inst. Met. 2016, 69, 699–703.

    Article  CAS  Google Scholar 

  3. Rajan, R.; Kah, P.; Mvola, B.; Martikainen, J. Trends in Aluminium Alloy Development and their Joining Methods. Rev. Adv. Mater. Sci. 2016, 44, 383–397.

    CAS  Google Scholar 

  4. Baradeswaran A and Elaya Perumal A. Effect of graphite on tribological and mechanical properties of AA7075 composites. Tribol Trans 2015; 58: 1–6.

    Article  CAS  Google Scholar 

  5. Lashgari H, Zangeneh S, Shahmir H, et al. Heat treatment effect on the microstructure, tensile properties and dry sliding wear behavior of A356–10% B4C cast composites. Mater Des 2010; 31: 4414–4422.

    Article  CAS  Google Scholar 

  6. Patel, V.V., Badheka, V. and Kumar, A., 2016. Friction stir processing as a novel technique to achieve superplasticity in aluminum alloys: process variables, variants, and applications. Metallography, Microstructure, and Analysis, 5(4), pp.278-293.

    Article  CAS  Google Scholar 

  7. Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R 2005;50:1–78.

    Article  Google Scholar 

  8. Sharma, V., Prakash, U. and Kumar, B.M., 2015. Surface composites by friction stir processing: A review. Journal of Materials Processing Technology, 224, pp.117-134.

    Article  CAS  Google Scholar 

  9. Kapoor, R.,Kumar, N., Mishra, R.S., Huskamp, C.S., Sankaran, K.K., 2010. Influence of fraction of high angle boundaries grained on the mechanical behavior of an ultrafine Al-Mg alloy. Mater. Sci. Eng. A 527, 5246–5254, http://dx.doi.org/https://doi.org/10.1016/j.msea.2010.04.086

    Article  CAS  Google Scholar 

  10. Mishra, R.S., Ma, Z.Y. and Charit, I., 2003. Friction stir processing: a novel technique for fabrication of surface composite. Materials Science and Engineering: A, 341(1-2), pp.307-310

    Article  Google Scholar 

  11. V. Sudhakar, G. Madhu, K. Madhusudhan Reddy, R. Srinivasa, Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing, Def. Technol. 11 (2015) 10–17.

    Article  Google Scholar 

  12. N. Pol, G. Verma, R.P. Pandey, T. Shanmugasundaram, Fabrication of AA7005/TiB2-B4C surface composite by friction stir processing: evaluation of ballistic behavior, Def. Technol 15 (2018) 1–6.

    Google Scholar 

  13. Arora, H.S., Singh, H. and Dhindaw, B.K., 2012. Composite fabrication using friction stir processing—a review. The International Journal of Advanced Manufacturing Technology, 61(9), pp.1043-1055.

    Article  Google Scholar 

  14. Rana, H.G., Badheka, V.J. and Kumar, A., 2016. Fabrication of Al7075/B4C surface composite by novel friction stir processing (FSP) and investigation on wear properties. Procedia Technology, 23, pp.519-528.

    Article  Google Scholar 

  15. Ramesh, R. and Murugan, N., 2013. Microstructure and metallurgical properties of aluminium 7075–T651 alloy/B4C 4% vol. surface composite by friction stir processing. Advanced Materials Manufacturing & Characterization, 3(1), pp.301-306.

    Article  Google Scholar 

  16. Bisadi, H. and Abasi, A., 2011. Fabrication of Al7075/TiB2 surface composite via friction stir processing. American Journal of Materials Science, 1(2), pp.67-70.

    Article  Google Scholar 

  17. Rana, H. and Badheka, V., 2019. Elucidation of the role of rotation speed and stirring direction on AA 7075-B4C surface composites formulated by friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), pp.977-994.

    Article  CAS  Google Scholar 

  18. Lim, D.K., Shibayanagi, T. and Gerlich, A.P., 2009. Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Materials Science and Engineering: A, 507(1-2), pp.194-199.

    Article  Google Scholar 

  19. Hashemi, R. and Hussain, G., 2015. Wear performance of Al/TiN dispersion strengthened surface composite produced through friction stir process: A comparison of tool geometries and number of passes. Wear, 324, pp.45-54.

    Article  Google Scholar 

  20. Kumar, S., Kumar, A. and Vanitha, C., 2019. Corrosion behaviour of Al 7075/TiC composites processed through friction stir processing. Materials Today: Proceedings, 15, pp.21-29.

    CAS  Google Scholar 

  21. Ande, R., Gulati, P., Shukla, D.K. and Dhingra, H., 2019. Microstructural and wear characteristics of friction stir processed Al-7075/SiC Reinforced Aluminium Composite. Materials Today: Proceedings, 18, pp.4092-4101.

    CAS  Google Scholar 

  22. Sert and O.N. Celik, Indian J. Eng. Mater. Sci., 2014, 21, p 35.

  23. Takhakh, A.M. and Abdulla, H.H., 2017. Surface modification of AA 7075-T651 Plate using friction stir processing with sic particles. Emirates Journal for Engineering Research, 22(3), pp.1-11.

    Google Scholar 

  24. Ramezani, N.M., Davoodi, B., Aberoumand, M. and Hajideh, M.R., 2019. Assessment of tool wear and mechanical properties of Al 7075 nanocomposite in friction stir processing (FSP). Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(4), pp.1-14.

    Article  Google Scholar 

  25. Murthy, V., Kumar, S.D., Saju, K.K., Rajaprakash, B.M. and Rajashekar, R., 2019. Optimization of Friction Stir Processing parameters for manufacturing silicon carbide reinforced aluminum 7075-T651 surface composite. Materials Today: Proceedings, 18, pp.4549-4555.

    CAS  Google Scholar 

  26. McDanels DL. Analysis of stress-strain, fracture, and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement. Metall Transac A 1985; 16: 1105–1115.

    Article  Google Scholar 

  27. Mao, Y., Ke, L., Liu, F., Liu, Q., Huang, C. and Xing, L., 2014. Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminum alloy thick plate. Materials & Design (1980-2015), 62, pp.334-343.

    Article  Google Scholar 

  28. Vijay, S.J. and Murugan, N., 2010. Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al–10 wt.% TiB2 metal matrix composite. Materials & Design, 31(7), pp.3585-3589.

    Article  CAS  Google Scholar 

  29. Palanivel, R., Mathews, P.K., Murugan, N. and Dinaharan, I., 2012. Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Materials & Design, 40, pp.7-16.

    Article  CAS  Google Scholar 

  30. Elangovan, K., Balasubramanian, V., Valliappan, M., 2007. Influences of tool pin pro-file and axial force on the formation of friction stir processing zone in AA6061aluminium alloy. Int. J. Adv. Manuf. Technol. 38, 285–295.

    Article  Google Scholar 

  31. Akramifard, H.R., Shamanian, M., Sabbaghian, M. and Esmailzadeh, M., 2014. Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing. Materials & Design (1980-2015), 54, pp.838-844.

    Article  Google Scholar 

  32. Gholami, S., Emadoddin, E., Tajally, M. and Borhani, E., 2015. Friction stir processing of 7075 Al alloy and subsequent aging treatment. Transactions of Nonferrous Metals Society of China, 25(9), pp.2847-2855.

    Article  CAS  Google Scholar 

  33. Hamdollahzadeh, A., Bahrami, M., Nikoo, M.F., Yusefi, A., Givi, M.B. and Parvin, N., 2015. Microstructure evolutions and mechanical properties of nano-SiC-fortified AA7075 friction stir weldment: The role of second pass processing. Journal of Manufacturing Processes, 20, pp.367-373.

    Article  Google Scholar 

  34. Barmouz, M., Asadi, P., Givi, M.B. and Taherishargh, M., 2011. Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles’ size and volume fraction. Materials Science and Engineering: A, 528(3), pp.1740-1749.

    Article  Google Scholar 

  35. Kurt, A., Uygur, I. and Cete, E., 2011. Surface modification of aluminium by friction stir processing. Journal of Materials Processing Technology, 211, pp. 313–317.

    Article  CAS  Google Scholar 

  36. Sharifitabar, M., Sarani, A., Khorshahian, S. and Afarani, M.S., 2011. Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route. Materials & Design, 32(8-9), pp.4164-4172.

    Article  CAS  Google Scholar 

  37. Patel, V.V., Badheka, V. and Kumar, A., 2016. Influence of friction stir processed parameters on superplasticity of Al-Zn-Mg-Cu alloy. Materials and Manufacturing Processes, 31(12), pp.1573-1582.

    Article  CAS  Google Scholar 

  38. Zarghani, S.A., Kashani-Bozorg, S.F. and Zarei-Hanzaki, A., 2009. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Materials Science and Engineering: A, 500(1-2), pp.84-91.

    Article  Google Scholar 

  39. Izadi, H., Nolting, A., Munro, C., Bishop, D.P., Plucknett, K.P. and Gerlich, A.P., 2013. Friction stir processing of Al/SiC composites fabricated by powder metallurgy. Journal of Materials Processing Technology, 213(11), pp.1900-1907.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Chandra Mouli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouli, D.S.C., Rao, R.U. Optimization of Friction Stir Process Parameters for Micro-Hardness and Wear Characteristics of Silicon Carbide-Reinforced Al-7075 Surface Composite. Trans Indian Inst Met 74, 3135–3143 (2021). https://doi.org/10.1007/s12666-021-02394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02394-4

Keywords

Navigation