Skip to main content

Advertisement

Log in

Effect of Strain Rate and Measuring Temperature on Elastocaloric Effect and Multi-caloric Properties of Co37.5 Ni34.5 Al28 Paramagnetic Shape Memory Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, the elastocaloric and magnetocaloric effects in a paramagnetic shape memory alloy, i.e., Co37.5 Ni34.5 Al28 alloy were investigated. The study reveals that the alloy shows an elastocaloric effect with a temperature change of 2.2 K under 400 Mpa keeping a strain rate of 0.25 s−1. It shows a temperature change of over 1 K within a temperature span of 50 K including the room temperature. Under the same stress, with a strain rate of 0.50 s−1, the material shows a temperature change of 2.7 K and gives more than 1 K temperature change within a span of 75 K including the ambient temperature. However, increasing the strain rate to 0.62 s−1 causes the material to break down. This shows that under a certain limit, the increase in the strain rate increases the elastocaloric temperature change and enhances the temperature window of the material along with the peak shifts toward lower measuring temperatures. Moreover, the study deduces that the material also exhibits a magnetocaloric effect. The study also reveals that both of the effects show temperature changes with the same sign and in the same region of the working temperature, thus enhancing one another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chauhan A et al. MRS Energy & Sustainability 2 (2015).

  2. Houghton J T, Ding Y, Griggs D J, Noguer M, van der Linden P J, Dai X, Maskell K, and Johnson C Climate Change 2001: The Scientific Basis, (Vol 881), Cambridge University Press, Cambridge (2001).

    Google Scholar 

  3. Root T L, Price J T, Hall K R, Schneider S H, Rosenzweig C, and Pounds J A, Nature 421 (2003) 57.

    Article  CAS  Google Scholar 

  4. Mendelsohn R, Nordhaus W D, Shaw D, Am. Econ. Rev. (1994) 753.

  5. Dingquan X, Ferroelectrics 231 (1999) 133.

    Article  Google Scholar 

  6. Manosa L, Planes A, and Acet M, J. Mater. Chem. A 1 (2013) 4925.

    Article  CAS  Google Scholar 

  7. Liu J, Gottschall T, Skokov K P, Moore J D, and Gutfleisch O, Nat. Mater. 11 (2012) 620.

    Article  CAS  Google Scholar 

  8. V.K. Pecharsky, K.A. Gschneidner Jr., Phys. Rev. Lett. 78 (23) (1997) 4494.

    Article  CAS  Google Scholar 

  9. Brück E, lyn M, Tishin A M, and Tegus O J, Magn.Magn. Mater. 290–291 (2005) 8.

    Article  Google Scholar 

  10. Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar-Narayan S, Planes A, Mañosa L, and Mathur N D, Adv. Mater. 25 (2013) 1360.

    Article  CAS  Google Scholar 

  11. Manosa L, González-Alonso D, Planes A, Barrio M, Tamarit, J -L, Titov I S, Acet M, Bhattacharyya A, and Majumdar S, Nat. Commun. 2 (2011) 595.

    Article  Google Scholar 

  12. Bechtold C, Chluba C, Lima de Miranda R, and Quandt E, Appl. Phys. Lett. 101 (2012) 091903.

    Article  Google Scholar 

  13. Xiao F, Fukuda T, and Kakeshita T, Appl. Phys. Lett. 102(2013) 161914.

    Article  Google Scholar 

  14. Xiao F, Fukuda T, Kakeshita T, and Jin X, Acta Mater. 87 (2015) 8.

    Article  CAS  Google Scholar 

  15. Khan M T, Wang Y, Wang C, Liao X, Yang S, Song X, and Ren X, Scripta Materialia 146 (2018) 182.

    Article  CAS  Google Scholar 

  16. Fähler S et al. Adv. Eng. Mater. 14 (2012) 10.

    Article  Google Scholar 

  17. Mañosa L, and Planes A, Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 374 (2016) 20150310.

    Article  Google Scholar 

  18. Manosa L, and Planes A, Adv. Mater. 29 (2017) 1.

    Article  Google Scholar 

  19. Hu Y, Li Z, Yang B, Qian S, Gan W, Gong Y, and Zhao X, APL Mater. 5 (2017) 046103.

    Article  Google Scholar 

  20. Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, and Planes A, Nat. Mater. 4 (2005) 450.

    Article  CAS  Google Scholar 

  21. Xu S, Huang H -Y, Xie J, Takekawa S, Xu X, Omori T, and Kainuma R, APL Mater. 4 (2016) 106106

    Article  Google Scholar 

  22. Xiao F, Fukuda T, and Kakeshita T, Scripta Mater. 124 (2016) 133.

    Article  CAS  Google Scholar 

  23. Singal H C, Mahajan A, and Singh R, Int. J. Mech. Eng. 3 (2016) 46.

    Article  Google Scholar 

  24. Emsley J, Nature's Building Blocks, Oxford University Press, Oxford (2001).

    Google Scholar 

  25. Hu , Li Z, Yang B, Qian S, Gan W, Gong Y, Li Y, Zhao D, Liu J, Zhao X, Zuo L, Wang D, and Du Y, APL Mater. 5 (2017) 046103.

    Article  Google Scholar 

  26. Nikam A N, and Hole J A, 2 (2014) 6.

  27. Cui J, Wu Y, Muehlbauer J, Hwang Y, Radermacher R, Fackler S, Wuttig M and Takeuchi I, Appl. Phys. Lett. 101 (2012) 1175.

    Google Scholar 

  28. Xu S, Huang H Y, Xie J, Takekawa S, Xu X, Omori T, and Kainuma R, APL Mater. 4 (2016) 106106.

    Article  Google Scholar 

  29. Ossmer H, Miyazaki S, and Kohl M, Mater. Today Proc. 2 (2015) S971–S974.

    Article  Google Scholar 

  30. Ossmer H, Lambrecht F, Gültig M, Chluba C, Quandt E and Kohl M, Acta Mater. 81 (2014) 9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by National Natural Science Foundation of China (Grant Nos. 51471127, 51431007 and 51371134), Program for Young Scientific New-star in Shaanxi Province of China (No. 2014KJXX-35), the Fundamental Research Funds for Central Universities of China.

Author information

Authors and Affiliations

Authors

Contributions

† M.T and Q.-U.H. have contributed equally to this work and should be considered as co-first authors.

Corresponding author

Correspondence to Muhammad Tahir Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.T., Hassan, Q.U. & Xiaoqi, L. Effect of Strain Rate and Measuring Temperature on Elastocaloric Effect and Multi-caloric Properties of Co37.5 Ni34.5 Al28 Paramagnetic Shape Memory Alloy. Trans Indian Inst Met 74, 3163–3169 (2021). https://doi.org/10.1007/s12666-021-02380-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02380-w

Keywords

Navigation