Skip to main content
Log in

Challenges and Future Prospective of Alternative Materials to Silica Sand for Green Sand Mould Casting: A Review

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Near-net shape casting having complex geometry is manufactured through the sand casting process. However, day by day, the availability of natural or synthetic silica sand has been decreasing and increasing the production cost of sand casting components. Therefore, there is a need to look into low-cost and readily available alternative materials to substitute the commercial-grade silica sand for the sand mould casting process. The constituent of silica sand is primarily silica (SiO2), Al2O3, and Fe2O3. The major constituents of industrial wastes such as fly ash, blast furnace slag, ferrochrome slag, stone dust, and red mud have SiO2, Al2O3, and Fe2O3. Therefore, industrial wastes may be used individually or combined with silica sand at a different ratio to substitute the commercial-grade silica sand in green mould castings. Researchers and scientists have evaluated the suitability of industrial wastes and local riverbed sand as an alternative material for green sand mould castings. The present review summarizes the advantages and constraints of using industrial wastes and local riverbed sand as an alternative to green sand mould casting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hawaldar N, and Zhang J, Int J Adv Manuf Technol 97 (2018) 1037.

    Google Scholar 

  2. Guney Y, Sari Y D, Yalcin M, Tuncan A, and Donmez S, Waste Manag 30 (2010) 1705.

    Google Scholar 

  3. Paluszkiewicz C, Holtzer M, and Bobrowski A, J Mol Struct J MOL STRUCT 880 (2008) 109.

    CAS  Google Scholar 

  4. Sahoo P K, Pattnaik S, and Sutar M K, Mater Sci Forum (2020). doi:https://doi.org/10.4028/www.scientific.net/MSF.978.29.

    Article  Google Scholar 

  5. Katsina C, Bala K, Reyazul H, and Khan R, Leonardo J Sci 12 (2013) 77.

    Google Scholar 

  6. Al-Jabri K S, Hisada M, Al-Oraimi S K, and Al-Saidy A H, Cement Concrete Compos 31 (2009) 483.

    CAS  Google Scholar 

  7. Srinivasan K, Siddharth C S K, Kaarthic L V A, and Thenarasu M, Mater Today Proc 5 (2018)12984.

    CAS  Google Scholar 

  8. Aweda J, and Jimoh Y, USEP J Res Inf Civ Eng 6 (2009) 68.

    Google Scholar 

  9. Sahoo P K, Pattnaik S, and Sutar M K, Silicon (2020). doi:https://doi.org/10.1007/s12633-020-00677-x.

    Article  Google Scholar 

  10. Al-Jabri K, Shoukry H, Khalil Ibrahim S, Nasir S, and Hassan Hossam F, J Mater Civ Eng 30 (2018) 04018152.

    Google Scholar 

  11. Murthy I N, and Rao J B, Proc Environ Sci 35 (2016) 583.

    CAS  Google Scholar 

  12. Inampudi N M, and Jinugu B R, Int J Metalcast 11 (2016). doi:https://doi.org/10.1007/s40962-016-0103-x.

  13. Murthy I N, and Rao J B, Mater Manuf Process 32 (2017) 507.

    CAS  Google Scholar 

  14. Sahoo P K, Pattnaik S, and Sutar M K, Int J Eng Technol Sci Res IJETSR 4 (2017) 4.

    Google Scholar 

  15. Palaniappan J, J Inst Eng India Ser D 98 (2017) 139.

    CAS  Google Scholar 

  16. Prabhushankar N, and Balaji N, IOP Conf Ser Mater Sci Eng 993 (2020) 012137.

  17. Parappagoudar M B, Pratihar D K, and Datta G L, Int J Cast Metals Res 20 (2007) 1.

    Google Scholar 

  18. Guharaja S, Noorul Haq A, and Karuppannan K M, Int J Adv Manuf Technol 30 (2006) 1040.

    Google Scholar 

  19. Khalasi H, Patel M, Parekh D, and Shethiya N, Int J Res Appl Sci Eng Technol (IJRASET) 4 (2016) 719.

    Google Scholar 

  20. Tiwari S, Singh R, and Srivastava S, Int J Prod Qual Manag 17 (2016) 127.

    Google Scholar 

  21. Pulivarti S R, and Birru A K, China Foundry 15 (2018) 152.

    Google Scholar 

  22. Kumaravadivel A, and Natarajan U, Int J Adv Manuf Technol 66 (2013) 695.

    Google Scholar 

  23. Heine R W, Loper C R, and Rosenthal P C, Principles of Metal Casting, Tata McGraw-Hill Education, (1967).

  24. Rao J B, and Murthy I N, Int J Cast Metals Res 31 (2018) 360.

    CAS  Google Scholar 

  25. Padmalal D, and Maya K, Springer Netherlands: Dordrecht, (2014) 57.

  26. Singh S, and Pillai A, SSRN Elect J (2019). doi:https://doi.org/10.2139/ssrn.3347052.

    Article  Google Scholar 

  27. Matzenbacher C A, Garcia A L H, Santos M S, Nicolau C C, Premoli S, Corrêa D S, de Souza C T, Niekraszewicz L, Dias J F, Delgado T V, Kalkreuth W, Grivicich I, and da Siva J, J Hazard Mater 324 (2017) 781.

    CAS  Google Scholar 

  28. Kumar B, Tike G K, and Nanda P K, J Mater Civ Eng 19 (2007) 906.

    CAS  Google Scholar 

  29. Ram L C, and Masto R E, Earth Sci Rev 128 (2014) 52.

    CAS  Google Scholar 

  30. Sutcu M, Erdogmus E, Gencel O, Gholampour A, Atan E, and Ozbakkaloglu T, J Clean Prod 233 (2019) 753.

    Google Scholar 

  31. Erdoğdu K, and Türker P, Cem Conc Res 28 (1998) 1217.

    Google Scholar 

  32. Shaikh F U A, and Supit S W M, Const Build Mater 82 (2015) 192.

    CAS  Google Scholar 

  33. Zhuang X Y, Chen L, Komarneni S, Zhou C H, Tong D S, Yang H M, Yu W H, and Wang H, J Clean Prod 125 (2016) 253.

    CAS  Google Scholar 

  34. Shehab H K, Eisa A S, and Wahba A M, Const Build Mater 126 (2016) 560.

    CAS  Google Scholar 

  35. Poon C S, Lam L, and Wong Y L, Cem Conc Res 30 (2000) 447.

    CAS  Google Scholar 

  36. Filho J H, Medeiros M H F, Pereira E, Helene P, and Isaia G C, J Mater Civ Eng 25 (2013) 411.

    Google Scholar 

  37. Wei X, Zhu H, Li G, Zhang C, and Xiao L, J Wuhan Univ Technol Mat Sci Edit 22 (2007) 728.

    CAS  Google Scholar 

  38. EL-Chabib H, and Ibrahim A, Const Build Mater 47 (2013) 245.

  39. Wn, Jian H, Xin C P, Fang L, and Chong W, Key Eng Mater 302 (2006) 470.

  40. Abbas S, Saleem M A, Kazmi S M S, and Munir M J, J Build Eng 14 (2017) 7.

    Google Scholar 

  41. Mann H S, Brar G S, Mann K S, and Mudahar G S, Nucl Eng Technol 48 (2016) 1230.

    Google Scholar 

  42. Leiva C, Arenas C, Alonso-fariñas B, Vilches L F, Peceño B, Rodriguez-galán M, and Baena F, J Build Eng 5 (2016) 114.

    Google Scholar 

  43. Cicek T, and Tanrıverdi M, Const Build Mater 21 (2007) 1295.

    Google Scholar 

  44. Kumar S, Singh K K, and Ramachandrarao P, J Mater Sci 36 (2001) 5917.

    CAS  Google Scholar 

  45. Zimmer A, and Bergmann C P, Waste Manag 27 (2007) 59.

    CAS  Google Scholar 

  46. Raja R S, Manisekar K, and Manikandan V, Mater Des 55 (2014) 499.

    Google Scholar 

  47. Koukouzas N K, Zeng R, Perdikatsis V, Xu W, and Kakaras E K, Fuel 85 (2006) 2301.

    CAS  Google Scholar 

  48. Nguyen TC, Loganathan P, Nguyen T V, Kandasamy J, Naidu R, and Vigneswaran S, Environ Sci Pollut Res 25 (2018) 20430.

    CAS  Google Scholar 

  49. Yao Z T, Ji X S, Sarker P K, Tang J H, Ge L Q, Xia M S, and Xi Y Q, Earth Sci Rev 141 (2015) 105.

    Google Scholar 

  50. Meawad A S, Bojinova D Y, and Pelovski Y G, Waste Manag 30 (2010) 2548.

    CAS  Google Scholar 

  51. Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International doi:https://doi.org/10.1520/C0618-19.

  52. Wesche K, Fly Ash in Concrete: Properties and performance, CRC Press, (1991).

  53. Singh A, Int J Res Appl Sci Eng Technol 6 (2018) 525.

    Google Scholar 

  54. Okonji P C, Nwobi-Okoye C C, and Atanmo P N, J Chin Adv Mater Soc 6 (2018) 270.

    CAS  Google Scholar 

  55. Srinivasa Rao P, and Birru AK, Mater Today Proc 4 (2017) 1186.

    Google Scholar 

  56. Karunakaran P, Jegadheesan C, Dhanapal P, and Sengottuvel P, Russ J Non-ferrous Metals 55 (2014) 247.

    Google Scholar 

  57. Nesterov N V, and Ermilov A G, Russ J Non-ferrous Metals 52 (2011) 499.

    Google Scholar 

  58. Munusamy P, Balaji R, and Chinnasamy S, Int J Mech Eng Technol 8 (2017) 292.

    Google Scholar 

  59. Chakrabarti A K, Casting Technology and Cast Alloys, PHI Learning Pvt. Ltd., (2005).

  60. Sahu N, Biswas A, and Kapure G U, Mineral Process Extract Metall Rev 37 (2016) 211.

    CAS  Google Scholar 

  61. Panda C R, Mishra K K, Panda K C, Nayak B D, and Nayak B B, Const Build Mater 49 (2013) 262.

    Google Scholar 

  62. Coetzee J J, Bansal N, and Chirwa E M N, Expo Health (2018). doi:https://doi.org/10.1007/s12403-018-0284-z.

    Article  Google Scholar 

  63. Zelić J, Cem Conc Res 35 (2005) 2340.

    Google Scholar 

  64. Dash M K, and Patro S K, Eur J Environ Civ Eng (2018) 1.

  65. Özcan A, and Karakoç M B, Struct Conc 20 (2019) 1607.

    Google Scholar 

  66. Nath S K, Const Build Mater 181 (2018) 487.

    CAS  Google Scholar 

  67. Al-Jabri K S, MATEC Web Conf 149 (2018) 01017.

    Google Scholar 

  68. Sibanda V, Kopong R, Ndlovu S, and Zwanga R, Int J Mineral Process 157 (2016) 46.

    CAS  Google Scholar 

  69. Oloyede O, Afolalu A, Oluwasegun A, Abioye A, and Adeoye A, Proc World Cong Eng (2019).

  70. Lind B B, Fällman A-M, and Larsson L B, Waste Manag 21 (2001) 255.

    CAS  Google Scholar 

  71. Sathwik S R, Sanjith J, and Sudhakar G N, Am J Eng Res (AJER) 5 (2016) 83.

    Google Scholar 

  72. Al-Jabri K, and Shoukry H, Const Build Mater 177 (2018) 210.

    CAS  Google Scholar 

  73. Türkmen İ, Ekinci E, Kantarcı F, and Sarıcı T, Int J Sustain Built Environ 6 (2017) 565.

    Google Scholar 

  74. Zhou X, Hao X, Ma Q, Luo Z, Zhang M, and Peng J, J Environ Manag 191 (2017) 58.

    CAS  Google Scholar 

  75. Kumar P H, Srivastava A, Kumar V, Majhi M R, and Singh V K, J Asian Ceram Soc 2 (2014) 169.

    Google Scholar 

  76. Acharya P K, and Patro S K, Waste Manag Res 34 (2016) 764.

    CAS  Google Scholar 

  77. Yılmaz A, and Karaşahin M, Mater Struct 43 (2010) 309.

    Google Scholar 

  78. Falayi T, Sustain Environ Res 29 (2019) 21.

    CAS  Google Scholar 

  79. Shailesh R A, Tattimani M S, and Rao S S, Mater Manuf Process 30 (2015) 1305.

    CAS  Google Scholar 

  80. Ahmad A, Naher S, and Brabazon D, Mater Manuf Process 29 (2014). doi:https://doi.org/10.1080/10426914.2013.822980.

  81. Ding M, Song J, and Honghui L, Mater Manuf Process 29: (2014) 853.

  82. Qu Y D, Jin M L, Qin G, Li R D, Gao M Q, Sun F S, and You J H, Mater Manuf Process 29 (2014) 1205.

    CAS  Google Scholar 

  83. Ayoola W, Adeosun S, Sanni O, and Oyetunji A, J Eng Sci Technol 7 (2012) 89.

    Google Scholar 

  84. Adedayo A V, and Aremo B, J Min Mater Charact Eng 10 (2011) 387.

    Google Scholar 

  85. Hu X, Ai F, and Yan H, Acta Metall Sin (English Lett) 25 (2012). doi:https://doi.org/10.11890/1006-7191-124-272.

  86. Ye H, J Mater Eng Perform 12 (2003) 288.

    CAS  Google Scholar 

  87. Yajjala R K, Inampudi N M, and Jinugu B R, J Mater Res Technol 9 (2020) 6257.

    CAS  Google Scholar 

  88. Murthy I N, and Rao J B, Int J Miner Metall Mater 24 (2017) 784.

    Google Scholar 

  89. Nayak R K, and Sundarraj S, Int J Cast Metals Res 22 (2009) 294.

    CAS  Google Scholar 

  90. Nayak R K, and Sundarraj S, Metall Materi Trans B 41 (2010) 151.

    Google Scholar 

  91. Beaney P A, Process for Bonding Particulate Materials. US3642503A (1972).

  92. Ramana M V, Int J Eng Res Appl 4 (2014) 245.

    Google Scholar 

  93. John V, Steel Found Soc Am (1967).

  94. Bashforth G R, Iron Production. 2nd ed. Springer US, 1957https://www.springer.com/gp/book/9781504122511.

  95. Murthy I N, Babu N A, and Rao J B, Proc Environ Sci 35 (2016) 597.

    CAS  Google Scholar 

  96. Abioye A, Abioye O, Ajayi O, Afolalu A, and Fajobi M, Int J Mech Eng Technol 9 (2018) 694.

    Google Scholar 

  97. Dirisu J, Asere A, Oyekunle J, Adewole, Ajayi O, Afolalu A, Joseph O, and Abioye A, Int J Appl Eng Res 12 (2017).

  98. Adetunji O, and Adegbola A, Int J Adv Res IJOAR 3 (2015).

  99. Bradley W, and Srinivasan M, Int Mater Rev 35 (1990) 129.

    CAS  Google Scholar 

  100. Muumbo A, Takita M, and Nomura H, Mater Trans 44 (2003) 893.

    CAS  Google Scholar 

  101. Oge M, Ozkan D, Celik M B, Sabri Gok M, and Cahit K A, Mater Today Proc 11 (2019) 516.

    CAS  Google Scholar 

  102. Ito T, Yotsuji J, and Nagamune A, ISIJ Int 54 (2014) 2618.

    CAS  Google Scholar 

  103. Kumar S, Kumar R, and Bandopadhyay A, Resour Conserv Recycling 48 (2006) 301.

    Google Scholar 

  104. Kumar S, Kumar R, Bandopadhyay A, Alex T C, Kumar B R, Das SK, and Mehrotra S P, Cem Conc Comp 30 (2008) 679.

    CAS  Google Scholar 

  105. Kriskova L, Pontikes Y, Pandelaers L, Cizer Ö, Jones PT, Van B K, and Blanpain B, Metall Materi Trans B 44 (2013) 1173–1184.

    CAS  Google Scholar 

  106. Dippenaar R. Industrial uses of slag (the use and re-use of iron and steelmaking slags). Ironmaking and Steelmaking 2005; 32 (2013) 35.

    Google Scholar 

  107. Yasipourtehrani S, Strezov V, Bliznyukov S, and Evans T, J Clean Prod 149 (2017) 137.

    CAS  Google Scholar 

  108. Islam A, Alengaram U J, Jumaat M Z, and Bashar I I, Mater Des (1980–2015) 56 (2014) 833.

  109. Das B, Prakash S, Reddy P S R, and Misra V N, Resour Conserv Recycling 50 (2007) 40.

    Google Scholar 

  110. Mostafa N Y, El-Hemaly S A S, Al-Wakeel E I, El-Korashy S A, and Brown P W, Cem Conc Res 31 (2001) 899.

    CAS  Google Scholar 

  111. Li G, and Zhao X, Cem Conc Comp 25 (2003) 293.

    CAS  Google Scholar 

  112. Sadek D M, J Clean Prod 79 (2014) 134.

    Google Scholar 

  113. Fredericci C, Zanotto E D, and Ziemath E C, J Non-Crystal Solids 273 (2000) 64.

    CAS  Google Scholar 

  114. Francis A A, J Eur Ceram Soc 24 (2004) 2819.

    CAS  Google Scholar 

  115. Svyazhin A G, Shakhpazov E K H, and Romanovich D A, Metallurgist 42 (1998) 129.

    Google Scholar 

  116. Rao K T, and Babu P S, Proc Int Conf Recent Trends Mech Eng (2015).

  117. Jinugu B R, and Inampudi N M, Arch Found Eng (2017). doi:https://doi.org/10.1515/afe-2017-0033.

    Article  Google Scholar 

  118. Narasimha M I, Arun B N, and Babu R J, Mater Today Proc 5 (2018) 161.

    Google Scholar 

  119. Murthy I N, and Rao J B, Mater Today Proc 5 (2018) 168.

    Google Scholar 

  120. Lee K M, Lee H K, Lee S H, and Kim G Y, Cem Conc Res 36 (2006) 1279.

    CAS  Google Scholar 

  121. Escalante-Garcia J I, Magallanes-Rivera R X, and Gorokhovsky A, Const Build Mater 23: (2009) 2851.

  122. Liu J, Yu Q, Zuo Z, Yang F, Duan W, and Qin Q, Const Build Mater 131 (2017) 381.

    CAS  Google Scholar 

  123. Allahverdi A, Maleki A, and Mahinroosta M, J Build Eng 18 (2018) 76.

    Google Scholar 

  124. Miyazawa S, Yokomuro T, Sakai E, Yatagai A, Nito N, and Koibuchi K, Const Build Mater 61: (2014) 90.

  125. Tsakiridis P E, Agatzini-Leonardou S, and Oustadakis P, J Hazard Mater 116 (2004) 103.

    CAS  Google Scholar 

  126. Zouboulis A I, and Kydros K A, J Chem Technol Biotechnol 58 (1993) 95.

    CAS  Google Scholar 

  127. Balomenos E, Gianopoulou I, Panias D, and Paspaliaris I, Int Conf Ind Hazard Waste Manag 36 (2011) 12.

    Google Scholar 

  128. Zhang R, Zheng S, Ma S, and Zhang Y, J Hazard Mater 189 (2011) 827.

    CAS  Google Scholar 

  129. Jústiz-Smith N, Buchanan V E, and Oliver G, Mater Sci Eng A 420 (2006) 250.

    Google Scholar 

  130. Adedayo A V, J Brazil Soc Mech Sci Eng 32 (2010) 171.

    Google Scholar 

  131. Chavan T K, Nanjundaswamy H M, Int J Latest Trends Eng Technol 2 (2013) 412.

    Google Scholar 

  132. Siddharth V S, Rao D S, and Murthy B V R, Int J Cast Metals Res (2020) 1.

  133. Karunakaran P, Eur J Sci Res 77 (2012) 5.

    Google Scholar 

  134. Selvaraj J, Assistant P, Sankarasubramanian R, and Mohanasundaram P, (2014).

  135. Abdullah A, Sulaiman S, Baharudin B T H T, Arifin M K M, and Vijayaram T R, Appl Mech Mater 66–68 (2011) 1384.

    Google Scholar 

  136. Hendro Y, Birawidha D, Isnugroho K, Bahfie F, and Sapriadi, Jurnal Dinamika Penelitian Industri (2019). doi:https://doi.org/10.28959/jdpi.v30i1.4626.

    Article  Google Scholar 

  137. Shuaib-Babata Y, Kabiru Suleiman A, Ambali I, and Bello M, Adeleke Univ J Eng Technol 2 (2019) 12.

    Google Scholar 

  138. Ademoh N A, and Ibrahim A O, Ind Eng Lett 9 (2019) 43.

    Google Scholar 

  139. Sadarang J, Nayak R K, and Panigrahi I, Mater Today Proc (2020). doi:https://doi.org/10.1016/j.matpr.2020.08.640.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the 'Advanced Manufacturing Technology program of Department of Science & Technology, Govt. of India', for the financial support to carry out this work (Grant no. DST/TDT/AMT/2017/173). Special thanks to RSB Metaltech, Pvt. Ltd, Cuttack, India, for their support as an industrial partner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Kumar Nayak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadarang, J., Nayak, R.K. & Panigrahi, I. Challenges and Future Prospective of Alternative Materials to Silica Sand for Green Sand Mould Casting: A Review. Trans Indian Inst Met 74, 2939–2952 (2021). https://doi.org/10.1007/s12666-021-02370-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02370-y

Keywords

Navigation