Skip to main content
Log in

Tribological Behaviour of Plasma-Sprayed Graphene Nanoplatelets Reinforced Hydroxyapatite Nanocomposite Coating

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

We aim to understand the tribological properties of graphene nanoplatelets (GNPs) reinforced hydroxyapatite (HA) composite coating synthesized using plasma spray on Ti alloy substrate (Ti-6Al-4 V). A significant reduction of 83% in wear volume loss is observed on addition of 2 wt. % GNPs in HA as compared to bare HA coating, respectively. Similarly, coefficient of friction (COF) shows the relative reduction of 70% is HA-2 wt. % GNP coating. Post-wear analysis by Raman spectroscopy confirms the retention of GNPs with the enlarged defect over the worn surface. FE-SEM investigation of worn surface shows the strengthening mechanism such as GNP bridging, GNP pull-out which could be attributed to enhanced wear resistance of the coating. GNPs induced lubrication has been observed as the prime reason for lower COF of the worn surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morks M F, J Mech Behav Biomed Mater 1 (2008) 105.

    Article  CAS  Google Scholar 

  2. Palanivelu R, Kumar A R, Appl Surf Sci315 (2014) 372.

    Article  CAS  Google Scholar 

  3. Palanivelu R, Kalainathan S, Kumar A R, Ceram Int40 (2014) 7745.

    Article  CAS  Google Scholar 

  4. Morks M F, Fahim N F, Kobayashi A, Appl Surf Sci255 (2008) 3426.

    Article  CAS  Google Scholar 

  5. Luo D B, Fridrici V, Kapsa P, Surface Coat Technol 204 (2010) 1259.

    Article  CAS  Google Scholar 

  6. Singh A, Singh G, Chawla V, J Mech Behav Biomed Mater 85 (2018) 20.

    Article  CAS  Google Scholar 

  7. Yugeswaran S, Yoganand C P, Kobayashia A, Paraskevopoulos K M, Subramanian B, J Mech Behav Biomed Mater 9 (2012) 22.

    Article  CAS  Google Scholar 

  8. Balani K, Chen Y, Harimkar S P, Dahotre N B, Agarwal A, ActaBiomater 3 (2007) 944.

    Article  CAS  Google Scholar 

  9. Hongqing L, Xie Y, Kai L, Liping H, Shansong H, Bizeng Z, Xuebin Z, Ceram Int40 (2014) 12821.

    Article  Google Scholar 

  10. Priyadershini S, AsiqRahman O S, Pandey K K, Keshri A K, Ceram Int 45 (2019) 5768.

    Article  CAS  Google Scholar 

  11. Liu H, Xi P, Xie G, Shi Y, Hou F, Huang L, Chen F, Zeng Z, Shao C, Wang J, J Phys Chem C 116 (2012) 3334.

    Article  CAS  Google Scholar 

  12. Pandey K K, Singh S, Choudhary S, Zhang C, Agarwal A, Li L H, Chen Y, Keshri A K, Ceram Int 47 (2021) 7.

    Google Scholar 

  13. Mukherjee B, Rahman O S A, Aminul I, Sribalaji M, Keshri A K, J Alloy Compd 727 (2017) 658.

    Article  CAS  Google Scholar 

  14. Lahiri D, Singh V, Keshri A K, Seal S, Agarwal A, Carbon 48 (2010) 3103.

    Article  CAS  Google Scholar 

  15. Lahiri D, Singh V, Benaduce A P, Seal S, Kos L, Agarwal A, J Mech Behav Biomed Mater 4 (2011) 44.

    Article  CAS  Google Scholar 

  16. Shen G, Fang F, Kang C, Nanotechnol Precision Eng 1 (2018) 107.

    Google Scholar 

  17. Singh S, Pandey K K, Rahman O S A, Haldar S, Lahiri D, Keshri A K, Mater Res Exp 7 (2020) 015415.

    Article  CAS  Google Scholar 

  18. Ranjan S, Mukherjee B, Islam A, Pandey K K, Gupta R, Keshri A K, J Euro Ceram Soc 40 (2020) 660.

    Article  CAS  Google Scholar 

  19. Shukla D K, Mukherjee B, Islam A, Keshri A K, Ceram Int 47 (2021) 17809.

    Article  CAS  Google Scholar 

  20. Yugeswaran S, Kobayashi A, HikmetUcisik A, Subramanian B, Appl Surface Sci 347 (2015) 48.

    Article  CAS  Google Scholar 

  21. Zhang C, Xu H, Geng X, Wang J, Xiao J, and Zhu P, J Thermal Spray Technol (2016).

  22. Kontou A, Southby M, Spikes H A, Wear 390–391 (2017) 236.

    Article  Google Scholar 

  23. Yazdani B, Xu F, Ahmad I, Sci Rep 23 (2015) 1.

    Google Scholar 

Download references

Acknowledgements

Authors greatly acknowledge the financial and infrastructural facilities provided from Indian Institute of Technology, Patna, Bihar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Kumar Keshri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Sharma, S. & Keshri, A.K. Tribological Behaviour of Plasma-Sprayed Graphene Nanoplatelets Reinforced Hydroxyapatite Nanocomposite Coating. Trans Indian Inst Met 74, 2901–2907 (2021). https://doi.org/10.1007/s12666-021-02367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02367-7

Keywords

Navigation