Skip to main content
Log in

A Multi-Physics Way to Investigate some Aspects of Melt Pool During Laser Substrate Interaction in Laser Metal Deposition Process

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Multi-physics phenomena during the process of laser-based metal deposition can be understood a priori using a three-dimensional numerical simulation which translates the melt pool behaviour during the laser substrate interaction. In this work, a macro-scale 3D Finite Element Method based modelling is performed to embrace the complex nature of the melt pool, as a result of laser substrate interaction in the absence of powder flow. The simulation is carried out considering the laser beam moving on a SS316L substrate. The study is intended to determine the melt pool width, depth, cooling rate and hardness. The cooling rate of 9310 K/s and 26,394 K/s are obtained to achieve a corresponding hardness value of 239 and 269 kg/mm2, respectively. The physics-based model is then integrated with the regression model to develop a hybrid model for the prediction of the melt pool characteristics. The hybrid model predicts the melt pool width, depth and hardness of the track with a good correlation of (90.67%, 97.77%), 99.08% and 97.32%, respectively. The part quality, largely depending upon the melt pool shape and characteristics can thus be controlled by using the combined hybrid approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Courbon C,Sova A, Valiorgue F, Pascal H, Sijobert J, Kermouche G, Bertrand Ph, Rech J. Surf Coat Tech 371 (2019) 235. https://doi.org/https://doi.org/10.1016/j.surfcoat.2019.01.092

    Article  CAS  Google Scholar 

  2. Zhong M, Liu W. J Mech Eng Sci 224 (2010) 1041. https://doi.org/10.1243/09544062JMES1782

    Article  Google Scholar 

  3. [3] Raju R, Sivalingam V, Sun J, Natarajan M and Zhao Y. Trans Indian Inst Met 72 (2019) 205. https://doi.org/10.1007/s12666-018-1474-x

    Article  CAS  Google Scholar 

  4. [4] Thompson S M, Bian L, Shamsaei N, Yadollahi A. Addit Manuf 8 (2015) 36. https://doi.org/https://doi.org/10.1016/j.addma.2015.07.001

    Article  Google Scholar 

  5. [5] Song L, Bagavath V S, Dutta B and Mazumder J. Int J Adv Manuf Technol 58 (2012) 247. https://doi.org/https://doi.org/10.1007/s00170-011-3395-2

    Article  Google Scholar 

  6. [6] Liu J, Wang Y, Costil S and Bolot R. Surf Coat Tech 318 (2017) 341. https://doi.org/https://doi.org/10.1016/j.surfcoat.2017.03.024

    Article  CAS  Google Scholar 

  7. [7] Romano J, Ladani L and Sadowski M. Procedia Manuf 1 (2015) 238. https://doi.org/https://doi.org/10.1016/j.promfg.2015.09.012

    Article  Google Scholar 

  8. [8] Labudovic M, Hu D, Kovacevic R. J Mater Sci 38 (2003) 35. https://doi.org/https://doi.org/10.1023/A:1021153513925

    Article  CAS  Google Scholar 

  9. [9] Wen S Y and Shin Y C. J Appl Phys 108 (2010) 044908. https://doi.org/https://doi.org/10.1063/1.3474655

    Article  CAS  Google Scholar 

  10. [10] Pinkerton A and Li L. J Phys D: Appl Phys 37 (2004) 1885. https://doi.org/https://doi.org/10.1088/0022-3727/37/14/003

    Article  CAS  Google Scholar 

  11. [11] Fathi E, Toyserkani E, Khajepour A, Durali M. J Phys D: Appl Phys 39 (2006) 2613. https://doi.org/https://doi.org/10.1088/0022-3727/39/12/022

    Article  CAS  Google Scholar 

  12. Morville S, Carin M, Carron D, Masson P Le, Peyre P, Gharbi M, Gorny C and Fabbro R. 2D finite element modeling of heat transfer and fluid flow during multilayered DMD laser process. In: ICALEO’2011 International Conference, Orlando, USA, 17–21 October 2011.

  13. [13] Peyre P, Aubry P, Fabbro R, Neveu R and Longuet A. J Phys D: Appl Phys 41 (2008) 025403. https://doi.org/https://doi.org/10.1088/0022-3727/41/2/025403

    Article  CAS  Google Scholar 

  14. [14] Fallah V, Alimardani M, Corbin S F and Khajepour A. Comput Mater Sci 50 (2011) 2124. https://doi.org/https://doi.org/10.1016/j.commatsci.2011.02.018

    Article  CAS  Google Scholar 

  15. [15] Zhang Y, Yu G, He X, Ning W and Zheng C. J Mater Process Technol 212 (2012) 106. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2011.08.011

    Article  CAS  Google Scholar 

  16. Chae H M. A Numerical and Experimental Study for Residual Stress Evolution in Low Alloy Steel during Laser Aided Additive Manufacturing Process. PhD Thesis, University of Michigan, USA, 2013.

  17. [17] Wen S and Shin Y C. Int J Heat Mass Transfer 54 (2011) 545319. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.011

    Article  CAS  Google Scholar 

  18. [18] Long R S, Liu W J, Xing F and Wang H B. Non Ferr Met Soc 18 (2008) 691. https://doi.org/https://doi.org/10.1016/S1003-6326(08)60120-X

    Article  CAS  Google Scholar 

  19. [19] Jendrzejewski R, Kreja I and Sliwinski G. Mater Sci Eng A 379 (2004) 313. https://doi.org/https://doi.org/10.1016/j.msea.2004.02.053

    Article  CAS  Google Scholar 

  20. [20] Alya S, Vundru C, Ankamreddy B, Birla S, Singh R. Trans Indian Inst Met (2021). https://doi.org/https://doi.org/10.1007/s12666-020-02151-z

    Article  Google Scholar 

  21. [21] Yan J, Battiato I and Fadel G. Int J Adv Manuf Technol91 (2017) 605. https://doi.org/https://doi.org/10.1007/s00170-016-9773-z

    Article  Google Scholar 

  22. [22] Meißner P, Watschke H, Winter J and Vietor T. Polymers12 (2020) 2949. https://doi.org/https://doi.org/10.3390/polym12122949

    Article  CAS  Google Scholar 

  23. [23] Zhuang J R, Lee Y T, Hsieh W H and Yang A S. Opt Laser Technol103 (2018) 59. https://doi.org/https://doi.org/10.1016/j.optlastec.2018.01.013

    Article  CAS  Google Scholar 

  24. [24] Criales L E, Arısoy Y M, Lane B, Moylan S, Donmez A, Özel T. Addit Manuf 13 (2017) 14. https://doi.org/https://doi.org/10.1016/j.addma.2016.11.004

    Article  CAS  Google Scholar 

  25. [25] Pant P, Chatterjee D, Nandi T, Samanta S K, Lohar A K, Changdar A. J Braz Soc Mech Sci Eng 41, (2019) 283. https://doi.org/https://doi.org/10.1007/s40430-019-1784-x

    Article  CAS  Google Scholar 

  26. [26] Pant P, Chatterjee D. Surf Interfaces 21 (2020) 100699. https://doi.org/https://doi.org/10.1016/j.surfin.2020.100699

    Article  Google Scholar 

  27. [27] Aggarwal K, Urbanic R J and Saqib S M. Rapid Prototyping J 24 (2018) 214–228. https://doi.org/https://doi.org/10.1108/RPJ-04-2016-0059

    Article  Google Scholar 

  28. [28] Erfanmanesh M, Abdollah-Pour H, Mohammadian-Semnani H and Shoja-Razavi R. Opt Laser Technol 97 (2017) 180. https://doi.org/https://doi.org/10.1016/j.optlastec.2017.06.026

    Article  CAS  Google Scholar 

  29. [29] Pant P, Chatterjee D, Samanta S, Nandi T, Lohar A K. J Braz Soc Mech Sci Eng 42 (2020) 88. https://doi.org/https://doi.org/10.1007/s40430-019-2166-0

    Article  CAS  Google Scholar 

  30. [30] Manvatkar V, De A and DebRoy T. J Appl Phys 116 (2014) 124905. https://doi.org/https://doi.org/10.1063/1.4896751

    Article  CAS  Google Scholar 

  31. COMSOL Inc., COMSOL 4.3 CFD Module User’s Guide (COMSOL Inc., Burlington, 2013).

  32. [32] Reddy S, Kumar M, Panchagnula J S, Parchuri P K, Kumar S S, Ito K and Sharma A. J Manuf Process40 (2019) 46. https://doi.org/https://doi.org/10.1016/j.jmapro.2019.03.007

    Article  Google Scholar 

  33. [33] Zheng B, Zhou Y, Smugeresky J E, Schoenung J M and Lavernia E J. Metall Mater Trans A 39 (2008) 2228. https://doi.org/https://doi.org/10.1007/s11661-008-9557-7

    Article  CAS  Google Scholar 

  34. [34] Manvatkar V D, Gokhale A A, Reddy G J, Venkataramana A and De A. Metall Mater Trans A 42 (2011) 4080. https://doi.org/https://doi.org/10.1007/s11661-011-0787-8

    Article  CAS  Google Scholar 

  35. [35] Liu Y, Tang M, Hu Q, Zhang Y and Zhang L. Mater Des 187 (2020) 108381. https://doi.org/https://doi.org/10.1016/j.matdes.2019.108381

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Chatterjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pant, P., Chatterjee, D. A Multi-Physics Way to Investigate some Aspects of Melt Pool During Laser Substrate Interaction in Laser Metal Deposition Process. Trans Indian Inst Met 74, 2843–2852 (2021). https://doi.org/10.1007/s12666-021-02364-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02364-w

Keywords

Navigation