Skip to main content
Log in

Investigation of Hot Working Performance and Microstructure Evolution of GH1059 Superalloy Based on Processing Map

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The hot working performance and microstructure evolution of an innovative GH1059 superalloy are investigated via Gleeble-3500 simulator under the deformation parameters of 950–1100 ℃ and 0.01–5 s−1. Through the true stress-true strain curves, the Arrhenius high temperature constitutive model is established, which is able to describe the influence of deformation parameters on deformation resistance. The processing map based on the dynamic materials model is constructed for the GH1059 superalloy. Along with the optical microscopy and electron backscattered diffraction microstructure analyses, the processing map is classified into three typical domains: unstable domain, safety transition domain and optimal domain. The optimal processing domain covers the deformation parameters of 1030–1100 ℃ and 0.01–0.1 s−1, where DRX occurs, leading to the best hot working performance for GH1059, while the absence of DRX is responsible for the unstable behavior. Furthermore, from the comprehensive analyses of crystallographic orientation and dislocation density, the major dynamic recrystallization (DRX) mechanism for this GH1059 superalloy is determined as the discontinuous dynamic recrystallization while the continuous dynamic recrystallization plays the minor role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luo R, Yang Y, Bian H, Chen L, Ouyang L, Peng C, Gao P, Xu G, and Cheng X, Steel Res Int 90 (2019) 1900022.

    Article  Google Scholar 

  2. Jiang J, Liu Z, Gao Q, Zhang H, Hao A, Qu F, Lin X, and Li H, Mater Sci Eng A 797 (2020) 140219.

    Article  CAS  Google Scholar 

  3. Li Y, Zhang Y, Chen Z, Ji Z, Zhu H, Sun C, Dong W, Li X, Sun Y, and Yao S, J Alloy Compd 847 (2020) 156507.

    Article  CAS  Google Scholar 

  4. Nie H, Hao X, Chen H, Kang X, Wang T, Mi Y, and Liang W, Mater Design 181 (2019) 107948.

    Article  CAS  Google Scholar 

  5. Yamagata H, Ohuchida Y, Saito N, and Otsuka M, Scripta Mater 45 (2001) 1055-1061.

    Article  CAS  Google Scholar 

  6. Yanushkevich Z, Belyakov A, and Kaibyshev R, Acta Mater 82 (2015) 244-254.

    Article  CAS  Google Scholar 

  7. Sellars C M, and McTegart W J, Acta Metall Sin 14 (1966) 1136-1138.

    Article  CAS  Google Scholar 

  8. Nnaemeka E U, Matt K, and Olanrewaju A O, Mater Today Commun 20 (2019) 100545.

    Article  Google Scholar 

  9. Nkhoma K, Siyasiya W, and Stumpf E. J Alloy Comp 595 (2014)103-112.

    Article  CAS  Google Scholar 

  10. Dai Q, Deng Y, and Tang J, T Nonferr Metal Soc 29 (2019) 2252-2261.

    Article  CAS  Google Scholar 

  11. Prasad Y, and Sasidhara S, Hot Working Guide: A Compendium of Processing Maps, ASM International, Ohio (1997).

    Google Scholar 

  12. Prasad Y, J Mater Eng Perform 12 (2003): 638-645.

    Article  CAS  Google Scholar 

  13. Anbuselvan S and Ramanathan S, Mater Des 31 (2010) 2319-2323.

    Article  CAS  Google Scholar 

  14. Momeni A and Dehghani K, Mater Sci Eng A 528 (2011) 1448-1454.

    Article  Google Scholar 

  15. Ouyang L, Luo R, Gui Y, Cao Y, Chen L, Cui Y, Bian H, Aoyagi K, Yamanaka K, and Chiba A, Mater Sci Eng A 788 (2020) 139638.

    Article  CAS  Google Scholar 

  16. Sun Y, Hu L, and Ren J, Mater Charact 100 (2015) 163-169.

    Article  CAS  Google Scholar 

  17. Dharmendra C, Rao K P, Zhao F, Prasad Y V R K, Hort, N, and Kainer, K U, Mater Sci Eng A 606 (2014) 11-23.

    Article  CAS  Google Scholar 

  18. Lukaszek-Solek A, and Krawczyk J, Mater Des 65 (2015) 165-173.

    Article  CAS  Google Scholar 

  19. Belyakov A, Tsuzaki K, Miura H, and Sakai T, Acta Mater 51 (2003) 847-861.

    Article  CAS  Google Scholar 

  20. Wang M, Sun C, Fu M, Liu Z, and Wang C, Mater Des 188 (2020) 108429.

    Article  CAS  Google Scholar 

  21. Liu Y, Ning Y, Yao Z, Li H, Miao X, Li Y, and Zhao Z, J Alloy Comp 675 (2016) 73-80.

    Article  CAS  Google Scholar 

  22. Wang L, Liu F, Cheng J, Zuo Q, and Chen C, J Alloy Comp 623 (2015) 69-78.

    Article  CAS  Google Scholar 

  23. Qu J, Xie X, Bi Z, Du J, and Zhang M, J Alloy Comp 785 (2019) 918-924.

    Article  CAS  Google Scholar 

  24. Guo Q, Li D, Peng H, Guo S, Jie H, and Peng D, Rare Met 31 (2012) 215-220.

    Article  CAS  Google Scholar 

  25. Zarnbrano O, and Loge R, Mater Charact 152 (2019) 151-161.

    Article  Google Scholar 

  26. Zhang H, Zhang K, Zhou H, Zhen L, Zhao C, and Yang X, Mater Des 80 (2015) 51-62.

    Article  CAS  Google Scholar 

  27. Zhu S, Yan H, Chen J, Wu Y, Liu J, and Tian J, Scripta Mater 63 (2010) 985-988.

    Article  CAS  Google Scholar 

  28. Zhang H, Zhang K, Zhou H, Lu Z, Zhao C, and Yang X, Mater Des 80 (2015) 51-62.

    Article  CAS  Google Scholar 

  29. Liu G, Han Y, Shi Z, Sun J, Zou D, and Qiao G, Mater Des 53 (2014) 662-672.

    Article  CAS  Google Scholar 

  30. Sun C, Liu G, Zhang Q, Li R, and Wang L, Mater Sci Eng A 595 (2014) 92-98.

    Article  CAS  Google Scholar 

  31. Wang Y, Shao W, Zhen L, and Zhang X, Mater Sci Eng A 486 (2008) 321-332.

    Article  Google Scholar 

  32. Li D, Guo Q, Guo S, Peng H, and Wu Z, Mater Des 32 (2011) 696-705.

    Article  CAS  Google Scholar 

  33. Azarbarmas M, Aghaie-Khafri M, Cabrera J, and Calvo J, Mater Sci Eng A 678 (2016) 137-152.

    Article  CAS  Google Scholar 

  34. Abedi H R, Hanzaki Z A, Liu Z, Xin R, Haghdadi N, and Hodgson P D, Mater Des 114 (2017) 55-64.

    Article  CAS  Google Scholar 

  35. Luo R, Chen L L, Zhang Y X, Cao Y, Peng C T, Yang Y Y, Liu T, Zheng Q, and Cheng X N, J Alloy Comp 865 (2021) 158601.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Jiangsu Province Key Laboratory of High-end Structural Materials [No. hsm1808]; China Postdoctoral Science Foundation [No. 2019M661738]; Natural Science Research of Jiangsu Higher Education Institutions of China [No. 19KJB430001]; the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University [No. 2020RALKFKT017]; National Natural Science Foundation of China [No. 51701028]; and the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology [No. ASMA202002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Chen, L., Luo, R. et al. Investigation of Hot Working Performance and Microstructure Evolution of GH1059 Superalloy Based on Processing Map. Trans Indian Inst Met 74, 2729–2737 (2021). https://doi.org/10.1007/s12666-021-02354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02354-y

Keywords

Navigation