Skip to main content
Log in

Optimization of the Die Forging Parameters of 21-4N Heat-Resistant Steel by Processing Maps

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The valve is one of the important parts of the engine, and 21-4N is the main material of the engine valve. In the die forging process, accurate process parameters are required to ensure that the engine valve parts that meet the requirements can be obtained. In this paper, the thermal simulation experiments are conducted to obtain stress–strain data of 21-4N heat-resistant steel at a deformation temperature of 1273–1453 K and a deformation rate of 0.01–10 s−1. And hot processing maps are used to optimize the die forging process of 21-4N. The numerical simulation of valve die forging based on the optimized parameters obtained from the thermal processing maps is conducted, and the forming rules are studied. The influence law of die forging temperature, die forging speed, and friction coefficient is analyzed and finally verified in valve processing enterprises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lai F, Qu S, Lewis R, Slatter T, Fu W, and Li X, Int J Fatigue 125 (2019) 299. https://doi.org/10.1016/j.ijfatigue.2019.04.010

    Article  CAS  Google Scholar 

  2. Lai F, Qu S, Duan Y, Lewis R, Slatter T, Yin L, Li X, Luo H, and Sun G, Tribol Int 128 (2018) 75. https://doi.org/10.1016/j.triboint.2018.07.015

    Article  CAS  Google Scholar 

  3. Zhu Y, Zhimin Y, and Jiangpin X. J Alloys Compd 509 (2011) 6106. https://doi.org/10.1016/j.jallcom.2011.03.038

    Article  CAS  Google Scholar 

  4. Wang Z G, Hirasawa K, Yoshikawa Y, and Osakada K, CIRP Ann 65 (2016) 293. https://doi.org/10.1016/j.cirp.2016.04.134

    Article  Google Scholar 

  5. Ji H, Liu J, Wang B, Zheng Z, Huang J, and Hu Z, Int J Adv Manuf Technol, 77 (2015) 15. https://doi.org/10.1007/s00170-014-6363-9

    Article  Google Scholar 

  6. Ji H, Liu J, Wang B, Tang X, Huo Y, Zhou J, and Hu Z, Int J Adv Manuf Technol 86 (2016) 2621. https://doi.org/10.1007/s00170-016-8360-7

    Article  Google Scholar 

  7. Lai F, Qu S, Lewis R, Slatter T, Sun G, Zhang T, and Li X, Materials 12 (2019) 1123. https://doi.org/10.3390/ma12071123

    Article  CAS  Google Scholar 

  8. Ji H, Liu J, Wang B, Tang X, Lin J, and Huo Y, J Alloys Compd 693 (2017) 674. https://doi.org/10.1016/j.jallcom.2016.09.230

    Article  CAS  Google Scholar 

  9. Ji H, Huang X, Ma C, Pei W, Liu J, and Wang B, Metals 8 (2018) 391. https://doi.org/10.3390/met8060391

    Article  CAS  Google Scholar 

  10. Ji H, Liu J, Wang B, Zhang Z, Zhang T, and Hu Z, J Mater Process Technol 221 (2015) 233. https://doi.org/10.1016/j.jmatprotec.2015.02.007

    Article  Google Scholar 

  11. Tulsyan R, and Shivpuri R, J Mater Eng Perform 4 (1995) 161. https://doi.org/10.1007/BF02664109

    Article  CAS  Google Scholar 

  12. Łukaszek-Sołek A, Krawczyk J, Śleboda T, and Grelowski J, J Mater Res Technol 8 (2019) 3281. https://doi.org/10.1016/j.jmrt.2019.05.018

    Article  CAS  Google Scholar 

  13. Wahed M A, Gupta A K, Sharma V, Mahesh K, Singh S K, and Kotkunde N, Int J Adv Manuf Technol 104 (2019) 3419. https://doi.org/10.1007/s00170-019-03956-z

    Article  Google Scholar 

  14. Chi J, Cai Z, and Li L, Int J Adv Manuf Technol 97 (2018) 1961. https://doi.org/10.1007/s00170-018-2049-z

    Article  Google Scholar 

  15. Cai Z, Ji H, Pei W, Tang X, Xin L, Lu Y, and Li W, Materials 13 (2020) 1282. https://doi.org/10.3390/ma13061282

    Article  CAS  Google Scholar 

  16. Anitha Lakshmi A, Srinivasa Rao C, Gangadhar J, Srinivasu C, and Singh S K, Mater Today Proc 4 (2017) 946. https://doi.org/10.1016/j.matpr.2017.01.106

    Article  Google Scholar 

  17. Zhang K, Wang Y, Jia J, and Li B, Proc Eng 81 (2014) 2153. https://doi.org/10.1016/j.proeng.2014.10.301

    Article  CAS  Google Scholar 

  18. Quan G, Zhang L, Wang X, and Li Y, J Alloys Compd 698 (2017) 178. https://doi.org/10.1016/j.jallcom.2016.12.140

    Article  CAS  Google Scholar 

  19. Sutton S C, and Luo A A, J Magn Alloys 8 (2020) 111. https://doi.org/10.1016/j.jma.2019.11.007

    Article  CAS  Google Scholar 

  20. Liu Q, Hui S, Tong K, Yu Y, Ye W, and Song S, J Alloys Compd 787 (2019) 527. https://doi.org/10.1016/j.jallcom.2019.02.046

    Article  CAS  Google Scholar 

  21. Ding X, Zhao F, Shuang Y, Ma L, Chu Z, and Zhao C, J Mater Process Technol 276 (2020) 116325. https://doi.org/10.1016/j.jmatprotec.2019.116325

    Article  CAS  Google Scholar 

  22. Wang Y, Zhao G, Xu X, Chen X, and Zhang C, J Alloys Compd 779 (2019) 735. https://doi.org/10.1016/j.jallcom.2018.11.289

    Article  CAS  Google Scholar 

  23. Liu J, Wang K, Lu S, Gao X, Li X, and Zhou F, J Nucl Mater 531 (2020) 151993. https://doi.org/10.1016/j.jnucmat.2020.151993

    Article  CAS  Google Scholar 

  24. Ansari N, Tran B, Poole W J, Singh S S, Krishnaswamy H, and Jain J, Mater Sci Eng A 777 (2020) 139051. https://doi.org/10.1016/j.msea.2020.139051

    Article  CAS  Google Scholar 

  25. Prasad Y V R K, Sastry D H, and Deevi S C, Intermetallics 8 (2000) 1067. https://doi.org/10.1016/S0966-9795(00)00041-8

    Article  CAS  Google Scholar 

  26. Park N, Yeom J, and Na Y, J Mater Process Technol 130-131 (2002) 540. https://doi.org/10.1016/S0924-0136(02)00801-4

    Article  Google Scholar 

  27. Łyszkowski R, and Bystrzycki J, Intermetallics 14 (2006) 1231. https://doi.org/10.1016/j.intermet.2005.12.014

    Article  CAS  Google Scholar 

  28. Li H, Zeng M, Liang X, Li Z, and Liu Y, Trans Nonferrous Met Soc China 22 (2012) 754. https://doi.org/10.1016/S1003-6326(11)61241-7

    Article  CAS  Google Scholar 

  29. Zhou S S, Deng K K, Li J C, Nie K B, Xu F J, Zhou H F, and Fan J F, Mater Des 64 (2014) 177. https://doi.org/10.1016/j.matdes.2014.07.039

    Article  CAS  Google Scholar 

  30. Wu H, Wen S P, Huang H, Gao K Y, Wu X L, Wang W, and Nie Z R, J Alloys Compd 685 (2016) 869. https://doi.org/10.1016/j.jallcom.2016.06.254

    Article  CAS  Google Scholar 

  31. Suresh K, Rao K P, Prasad Y V R K, Hort N, and Dieringa H, Trans Nonferrous Met Soc China 28 (2018) 1495. https://doi.org/10.1016/S1003-6326(18)64790-9

    Article  CAS  Google Scholar 

  32. Lin Y C, Luo S, Jiang X, Tang Y, and Chen M, Trans Nonferrous Met Soc China 28 (2018) 592. https://doi.org/10.1016/S1003-6326(18)64692-8

    Article  CAS  Google Scholar 

  33. Ji H, Cai Z, Pei W, Huang X, and Lu Y, J Mater Res Technol (2020) https://doi.org/10.1016/j.jmrt.2020.02.059

    Article  Google Scholar 

  34. Cai Z, Ji H, Pei W, Tang X, Huang X, and Liu J, Vacuum 165 (2019) 324. https://doi.org/10.1016/j.vacuum.2019.04.041

    Article  CAS  Google Scholar 

  35. Li Y, Ji H, Cai Z, Tang X, Li Y, and Liu J, Materials 12 (2019) 1893. https://doi.org/10.3390/ma12121893

    Article  CAS  Google Scholar 

  36. Li Y, Ji H, Li W, Li Y, Pei W, and Liu J, Materials (Basel, Switzerland) 12 (2018) 89. https://doi.org/10.3390/ma12010089

    Article  CAS  Google Scholar 

  37. Quan G, Kang B, Ku T, and Song W, Int J Adv Manuf Technol 56 (2011) 1069. https://doi.org/10.1007/s00170-011-3241-6

    Article  Google Scholar 

  38. Sun C, Xiang Y, Liu G, Zuo X, Wang M, and Zhang Q, Int J Adv Manuf Technol 89 (2017) 3419. https://doi.org/10.1007/s00170-016-9271-3

    Article  Google Scholar 

  39. Zeng J, Wei X, Dong S, Wang F, Jin L, and Dong J, Int J Adv Manuf Technol 106 (2020) 133. https://doi.org/10.1007/s00170-019-04437-z

    Article  Google Scholar 

  40. Zhao C, Zhang J, Yang B, Li Y F, Huang J F, and Lian Y, Steel Res Int 91 (2020) 2000020. https://doi.org/10.1002/srin.202000020

    Article  CAS  Google Scholar 

  41. Lin Y C, Pang G, Jiang Y, Liu X, Zhang X, Chen C, and Zhou K, Vacuum 169 (2019) 108878. https://doi.org/10.1016/j.vacuum.2019.108878

    Article  CAS  Google Scholar 

  42. Lin Y C, Huang J, He D, Zhang X, Wu Q, Wang L, Chen C, and Zhou K C, J Alloys Compd 795 (2019) 471. https://doi.org/10.1016/j.jallcom.2019.04.319

    Article  CAS  Google Scholar 

  43. Luo S, Wang Q, Zhang P, Li J, and Liu Q, J Mater Res Technol 9 (2020) 2107. https://doi.org/10.1016/j.jmrt.2019.12.041

    Article  CAS  Google Scholar 

  44. Kim D K, Kim D Y, Ryu S H, and Kim D J, J Mater Process Tech 113 (2001) 148. https://doi.org/10.1016/S0924-0136(01)00700-2

    Article  CAS  Google Scholar 

  45. Jeong H S, Cho J R, and Park H C, J Mater Process Technol 162-163 (2005) 504. https://doi.org/10.1016/j.jmatprotec.2005.02.101

    Article  CAS  Google Scholar 

  46. Prasad Y V R K, Gegel H L, Doraivelu S M, Malas J C, Morgan J T, Lark K A, and Barker D R, Metall Trans A 15 (1984) 1883. https://doi.org/10.1007/BF02664902

    Article  Google Scholar 

  47. Ziegler H, and Carlson E D, J Appl Mech 4 (1978) 966.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51805024), this work is also supported by the Tangshan talent foundation innovation team (20130204D, 19140203F, 18130216A) and funded by China Postdoctoral Science Foundation (Grant No. 2018M641186).

Author information

Authors and Affiliations

Authors

Contributions

Xiaomin Huang: Conceptualization, Investigation, Writing—original draft. Yong Zang: Project administration. Ben Guan: Editing, Formal analysis. Hongchao Ji: Writing—review and editing, experiment.

Corresponding authors

Correspondence to Yong Zang or Hongchao Ji.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Zang, Y., Guan, B. et al. Optimization of the Die Forging Parameters of 21-4N Heat-Resistant Steel by Processing Maps. Trans Indian Inst Met 74, 2713–2728 (2021). https://doi.org/10.1007/s12666-021-02346-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02346-y

Keywords

Navigation