Skip to main content
Log in

Effect of processing route on microstructure, mechanical and dry sliding wear behavior of commercially pure magnesium processed by ECAP with back pressure

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The commercially pure magnesium (Mg) was successfully processed through equal channel angular pressing (ECAP) at a set of warm temperature and back pressure up to four passes in different routes. The microstructural, mechanical and wear behavior has been investigated with respect to the number of passes and the processing route. The samples have displayed substantial grain refinement, improved mechanical properties and wear resistance after the ECAP process. The fractographs of tensile samples confirmed fracture mode as a ductile–brittle mixed fracture. The X-ray line profile analysis demonstrates that modifications in the microstructure after ECAP contribute to the improved mechanical properties. The sample processed in route BC exhibits improved mechanical and wear properties owing to its refined microstructure and maximum microhardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mordike B L, and Ebert T, Mater Sci Eng A 302 (2001) 37

    Google Scholar 

  2. Avedesian M M, and Baker H, Magnesium and Magnesium Alloys—ASM Speciality Handbook (ASM International, Ohio, 1999).

  3. iwahashi Y, Wang J, Horita Z, Nemoto M, and Langdon T G, Scr Mater 35 (1996) 143.

    CAS  Google Scholar 

  4. Valiev R Z, and Langodn T G, Prog Mater Sci 51 (2006) 881.

    CAS  Google Scholar 

  5. Poggiali F S J, Silva C L P, Pereira P H R, Figueiredo R B, and Cetlin P R, J Mater Res Tech 3 (2014) 331.

    CAS  Google Scholar 

  6. Li Q, Jiao X, Mater Sci Eng A 733 (2018) 179.

    CAS  Google Scholar 

  7. Kwak E J, Bok C H, Seo M H, Kim T-S, and Kim H S, Mater Trans 49 (2008) 1006.

    CAS  Google Scholar 

  8. Gana W M, Zheng M Y, Chang H, Wang X J, Qiao X G, Wua K, Schwebke B, and Brokmeier H-G, J Alloy Compd 470 (2009) 256.

    Google Scholar 

  9. Fan G D, Zheng M Y, Hu X S, Xu C, and Wu K, J Alloy Compd 549 (2013) 38.

    CAS  Google Scholar 

  10. Lima G F, Triques M R M, Kiminami C S, Botta W J, and Jorge A M Jr, J Alloy Compd 586 (2014) S405.

    CAS  Google Scholar 

  11. Biswas S, Brokmeier H-G, Fundenberger J-J, and Suwas S, Mater Char 102 (2015) 98.

    Google Scholar 

  12. Yamashita A, Horita Z, and Langdon T G, Mater Sci Eng A. 300 (2001) 142.

    Google Scholar 

  13. Fan G D, Zheng M Y, Hua X S, Xu C, Wu K, and Golovin I S, Mater Sci Eng A 556 (2012) 588.

    CAS  Google Scholar 

  14. Fan G D, Zheng M Y, Hu X S, Wu K, Gan W M, and Brokmeier H G, Mater Sci Eng A 561 (2013) 100.

    CAS  Google Scholar 

  15. Gholinia A, Prangnell P, and Markushev M, Acta Mater. 48 (2000) 1115.

    CAS  Google Scholar 

  16. Poggiali F S J, Silva C L P, Pereira P H R, Figueiredo R B, and Cetlin P R, J Mater Res Technol 3 (2014) 331.

    CAS  Google Scholar 

  17. Dheda S S, and Mohamed F A, Mater Sci Eng A 528 (2011) 8179.

    CAS  Google Scholar 

  18. Jiao X, Li Q, Emerg Mater Res, 3 (2014) 261.

    Google Scholar 

  19. Nakashima K, Horita Z, Nemoto M, and Langdon T G, Acta Mater. 46 (1998) 1589

    CAS  Google Scholar 

  20. Liu Z, Liang G, Wang E, and Wang Z, Mater Sci Eng A 242 (1998) 137.

    Google Scholar 

  21. Samsudin M H M, Kurniawan D, and Fethma M, Nor Proc Manu 2 (2015) 230.

    Google Scholar 

  22. Mogucheva A, Babich E, Ovsyannikov B, and Kaibyshev R, Mater Sci Eng A 560 (2013) 178.

    CAS  Google Scholar 

  23. Apps P J, Bowen J R, and Prangnell P B, Acta Mater 51 (2003) 2811.

    CAS  Google Scholar 

  24. Oruganti R K, Subramanian P R, Marte J S, Gigliotti M F, and Amancherla S, Mater Sci Eng A 406 (2005) 102.

    Google Scholar 

  25. Lapovok Y R, J Mater Sci 40 (2005) 341.

    Google Scholar 

  26. Mckenzie P W J, Lapovok R, and Estrin Y, Acta Mater 55 (2007) 2985

    CAS  Google Scholar 

  27. Kang F, Wang J T, Su Y L, and Xia K N, J Mater Sci 42 (2007) 1491

    CAS  Google Scholar 

  28. Mckenzie P W J, and Lapovok R, Acta Mater 58 (2010) 3212.

    CAS  Google Scholar 

  29. Wang Y L, Lapovok R, Wang J T, Qi Y S, and Estrin Y, Mater Sci Eng A. 628 (2015) 21.

    CAS  Google Scholar 

  30. Xu C, Xia K, and Langdon T G, Mater Sci Eng A 527 (2009) 205.

    Google Scholar 

  31. Li J, Wongsa-Ngam J, Xu J, Shan D, Guo B, and Langdon T G, Wear 326 (2015) 10.

    Google Scholar 

  32. Singh N, Mir I U H, Raina A, Anand A, Kumar V, and Sharma S M, Alexandria Eng J, 57 (2018) 1323.

    Google Scholar 

  33. Kato H, Todaka Y, Umemoto M, Haga M, and Sentoku E, Wear 336 (2015) 58.

    Google Scholar 

  34. Gao N, Wang C T, Wood R J K, and Langdon T G, J Mater Sci, 47 (2012) 4779.

    CAS  Google Scholar 

  35. Elhefnawey M, Shuai GL, Li Z, Nemat-Alla M, Zhang D T, and Li L, Alexandria Eng J (2020) https://doi.org/10.1016/j.aej.2020.10.021.

    Article  Google Scholar 

  36. Avcu E, Tribol Int 110 (2017) 173.

    CAS  Google Scholar 

  37. Chegini M, and Shaeri M H, Mater Charact 140 (2018) 147.

    CAS  Google Scholar 

  38. El Aal M I A, Mater Sci Eng A 539 (2012) 308.

    Google Scholar 

  39. Wang C T, Gao N, Wood R J K, and Langdon T G, J Mater Sci 46 (2011) 123.

    Google Scholar 

  40. Sarkar A, Bhowmik A, and Suwas S, Appl Phys A 94 (2009) 943.

    CAS  Google Scholar 

  41. Renzettia R A, Sandim H R Z, Bolmaro R E, Suzuki PA, and Moslang A, Mater Sci Eng A 534 (2012) 142.

    Google Scholar 

  42. Lei W, and Zhang H, Mater Lett 271 (2020) 27781

    Google Scholar 

  43. Aliakbari Sani S, Ebrahimi G R, and Kiani Rashid A R, J Magn Alloys 4 (2016) 104.

    CAS  Google Scholar 

  44. Fukuda Y, Oh-Ishi K, Horita Z, and Langdon T G, Acta Mater 50 (2002) 1359.

    CAS  Google Scholar 

  45. Gubicza J, Chinh N Q, Csanadi T, Langdon T G, and Ungar T, Mater Sci Eng A 462 (2007) 86

    Google Scholar 

  46. Caceres C H, and Mann G E, and Griffiths J R, Metall Trans A 42 (2011) 1950.

    CAS  Google Scholar 

  47. Borbely A and Ungar T, C R Physique 13 (2012) 293

    CAS  Google Scholar 

  48. Nagaraj M, and Ravisankar B, Mater Sci Eng A 738 (2018) 420

    CAS  Google Scholar 

  49. Elhefnawey M, Shuai G L, Li Z, Nemat-Alla M, Zhang D T, and Li L, Vacuum 174 (2020) 109191.

    CAS  Google Scholar 

  50. Iwahashi Y, Horita Z, Nemoto M, and Langdon T G, Acta Mater 46 (1998) 3317.

    CAS  Google Scholar 

  51. Figueiredo R B, Beyerlein I J, Zhilyaev A P, and Langdon T G, Mater Sci Eng A 527 (2010) 1709.

    Google Scholar 

  52. Suwas S, Gottstein G, and Kumar R, Mater Sci Eng A 471 (2007) 1.

    Google Scholar 

  53. Krajňák T, Minárik P, Gubicza J, Máthis K, Kužel R, and Janeček M, Mater Charact 123 (2017) 282.

    Google Scholar 

  54. Jie X, Wang X, Zhu X, Shirooyeh M, Wongsa-Ngam J, Shan D, Guo B, and Langdon T G, J Mater Sci 48 (2013) 4117

    Google Scholar 

  55. Semenov V I, Jeng Y-R, Huang S-J, Dao Y-Zh, Hwang S-J, Shuster L S H, Chertovskikh S V, and Lin P-CH, J Friction Wear 30 (2009) 194.

    Google Scholar 

  56. Zhilyaev A P, Shakhova I, Belyakov A, Kaibyshev R, and Langdon T G, Wear 305 (2013) 89.

    CAS  Google Scholar 

  57. Huang S J, Semenov V I, Shuster L S, and Lin P C, Wear 271 (2011) 705.

    CAS  Google Scholar 

  58. Ortiz-Cuellar E, Hernandez-Rodriguez M A L, and Garcıa-Sanchez E, Wear 271 (2011) 1828.

    CAS  Google Scholar 

  59. Ebrahimi M, Attarilar S, Djavanroodi F, Gode C, and Kim H S, Mater Des 63 (2014) 531.

    CAS  Google Scholar 

  60. Farhat Z N, Ding Y, Northwood D O, and Alpas A T, Mater Sci Eng A 206 (1996) 302.

    Google Scholar 

  61. Straffelini G, and Molinari A, Wear 236 (1999) 328.

    CAS  Google Scholar 

  62. Chen H, and Alpas A T, Wear 246 (2000) 106.

    CAS  Google Scholar 

  63. Wilson S, and Alpas A T, Wear 212 (1997) 41.

    CAS  Google Scholar 

  64. Lim C Y H, Lim S C, and Gupta M, Wear 255 (2003) 629.

    CAS  Google Scholar 

  65. Sharma S C, Anand B, and Krishna M, Wear 241 (2000) 33.

    CAS  Google Scholar 

  66. Thakur S K, and Dhindaw B K, Wear 247 (2001) 191.

    CAS  Google Scholar 

  67. El-Morsy A-W, Mater Sci Eng A 473 (2008) 330.

    Google Scholar 

  68. Archard J F, J Appl Phys 24 (1953) 981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Babu Sankuru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankuru, A.B., Sunkara, H., Sethuraman, S. et al. Effect of processing route on microstructure, mechanical and dry sliding wear behavior of commercially pure magnesium processed by ECAP with back pressure. Trans Indian Inst Met 74, 2659–2669 (2021). https://doi.org/10.1007/s12666-021-02340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02340-4

Keywords

Navigation