Skip to main content
Log in

Effect of Ash Content on the Pyrolysis of Indian Origin Coal

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The current research investigates the kinetics of non-isothermal and isothermal pyrolysis of three different coal types (with different ash content) using the thermogravimetric (TGA) method in an argon atmosphere. The effect of mineral matter content on the pyrolysis characteristics was presented within the temperature range 600–1000 °C. The high ash coal sample used in the present study was collected from Talcher region, Orissa State, India. The coal sample was divided into three fractions (1.4, 1.6, 1.8) using the density separation technique to examine the effect of mineral matter or ash content on the coal pyrolysis during isothermal and non-isothermal heating. The results in the current study show that the mineral matter content helps in aiding the devolatilization rates in the pyrolysis process. Compared to the other coals, the 1.8 coal with a high ash content shows the maximum mass loss rate in the devolatilization range. The mass loss rate for the 1.4, 1.6, and 1.8 coals is found to be 1.2 μg/min, 1.2 μg/min, and 1.7 μg/min respectively. In isothermal conditions, the activation energies for 1.4, 1.6, and 1.8 is found to be 4.49 kJ/mol, 4.58 kJ/mol, and 12.5 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Behera S K, Chakraborty S, and Meikap B C, Int J Coal Sci Technol 5 (2018) 142.

    Article  CAS  Google Scholar 

  2. Behera S K, Chakraborty S, and Meikap B C, Fuel 196 (2017) 102.

    Article  CAS  Google Scholar 

  3. Mohanta S, and B C, Energy Sour, Part A: Recover, Util, Environ Eff 38 (2016) 1693.

    Article  CAS  Google Scholar 

  4. Mohanta S, Chakraborty S, and Meikap B C,  Ind Eng Chem Res 50 (2011) 10865.

    Article  CAS  Google Scholar 

  5. Tripathy A, Biswal S K, and Meikap B C, Adv Powder Technol 27 (2016) 1488.

    Article  CAS  Google Scholar 

  6. Baruah B P, and Khare P, Energy Fuels 21 (2007): 3346.

    Article  CAS  Google Scholar 

  7. Raghuvanshi G, Chakraborty P, Hazra B, Adak A K, Singh P K, Singh A K, and Singh V,  Int J Coal Prep Util (2020) 1.

    Article  Google Scholar 

  8. Chavan P, Datta S, Saha S, Sahu G, and Sharma T,  Sol Fuel Chem 46 (2012): 108.

    Article  CAS  Google Scholar 

  9. Ahmad T, Awan I A, Nisar J, and Ahmad I,  Energy Convers Manag 50 (2009) 1163.

    Article  CAS  Google Scholar 

  10. Shi L, Qingya Q, Guo X, Wu W, and Liu Z,  Fuel Process Technol 108 (2013) 125.

    Article  CAS  Google Scholar 

  11. Khare P, Baruah B P, and Rao P G.  Fuel 90 (2011): 3299.

    Article  CAS  Google Scholar 

  12. Saida S, Chakravaty S, Sahu R, Biswas R D, and Chakravarty K.  Trans o Indian Inst Met 73 (2020) 1257.

    Article  CAS  Google Scholar 

  13. Shaik S, Chakravarty S, Mishra P R, Sahu R, Chakravarty K, Trans Indian Inst Met 72(2019) 3129.

  14. Mishra P R, Sahu R, and Chakravarty S,  Trans Indian Inst Met 73 (2020): 207.

    Article  CAS  Google Scholar 

  15. [15] Banerjee A, Mishra P R, Mohanty A, Chakravarty K, Biswas R D, Sahu R, and Chakravarty S, Int J Coal Sci Technol 3 (2016): 97.

    Article  CAS  Google Scholar 

  16. Khare P, and Baruah B P,  Energy Sour, Part A: Recover, Util, Environ Eff 36 (2014) 774.

    Article  CAS  Google Scholar 

  17. Veras C A G, Carvalho J A G, and Ferreira M A,  J Braz Chem Soc 13 (2002): 358.

    Article  CAS  Google Scholar 

  18. Liu Q, Haoquan H, Zhou Q, Zhu S, and Chen G.  Fuel 83 (2004) 713

    Article  CAS  Google Scholar 

  19. Zhou L, Zhang G, Reinmöller M, and Meyer B, Fuel 239 (2019) 1194.

    Article  CAS  Google Scholar 

  20. Kosowska-Golachowska M, J Therm Sci 26 (2017): 355.

    Article  CAS  Google Scholar 

  21. Wang C A, Zhang X, Liu Y, and Che D, Appl Energy 97 (2012) 264.

    Article  CAS  Google Scholar 

  22. Solomon P R, Hamblen D G, Carangelo R M, Serio M A, and Deshpande G V,  Energy & Fuels 2 (1988): 405.

    Article  CAS  Google Scholar 

  23. Tokmurzin D, Ra H W, Yoon S M, Yoon S J, Lee J G, Seo M W, and Adair D.  Int J Coal Prep Util (2019) 1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge and extend their sincere gratitude to the significant contribution and moral support provided by NIT Jamshedpur and CSIR-NML (Jamshedpur).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Ranjan Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P.R., Sahu, R. & Chakravarty, S. Effect of Ash Content on the Pyrolysis of Indian Origin Coal. Trans Indian Inst Met 74, 2357–2366 (2021). https://doi.org/10.1007/s12666-021-02334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02334-2

Keywords

Navigation