Skip to main content

Advertisement

Log in

Effect of Space Holder on Porosity, Structure and Mechanical Properties of Al Processed via Powder Metallurgy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In recent times, porous materials have been gaining greater interest due to its potential applications such as energy, light weight structural components, scaffolds for bio-applications, insulators, etc. The present work aims at investigating the effect of different space holder materials (NaCl, urea and sugar) on porosity, microstructure and properties of aluminum (Al). In particular, the space holder material amount was fixed at 30 vol% to prepare porous Al. Dissolution sintering process (DSP) and sintering dissolution process (SDP) have been used to prepare the porous Al. Depending on type of space holder and processing technique, the volume fraction of porosity of Al processed via DSP varied in the range of 22.75% to 34.76% and SDP resulted porosity from 26.17 to 34.16%. The Al obtained by DSP was predominantly characterized with porous structure without much interconnected pores. On the contrary, more amount of pores and interconnected porosity was observed in the Al samples produced by SDP. The porous Al processed via DSP exhibited better compression properties (yield strength: 31.0–49.5 MPa, compression strength: 41–161.5 MPa, %Strain: 11.25–46.73, elastic modulus: 0.26–1.42 GPa) than SDP Al (its compression properties measured as: yield strength: 23.5–32.5 MPa, compression strength: 27.5–107.0 MPa, %Strain: 5.79–34.82, elastic modulus: 0.52–1.59 GPa). Such differences in the mechanical properties of porous Al can be attributed to pore structure and residual amount of space holder. The residual space holder content varied between 1.72 and 14.65% for the porous Al processed under different conditions. Overall, this study demonstrates that Urea(spherical) and sugar are preferable as space holder materials to prepare porous Al via DSP and SDP, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ohji T, and Fukushima M, Int Mater Rev 57 (2012) 115. https://doi.org/10.1179/1743280411Y.0000000006.

    Article  CAS  Google Scholar 

  2. Davies G J, and Zhen S, J Mater Sci 18 (1983) 1899. https://doi.org/10.1007/BF00554981.

    Article  CAS  Google Scholar 

  3. Youn S W, and Kang C G, Metall Mater Trans B Process Metall Mater Process Sci 35 (2004) 769. https://doi.org/10.1007/s11663-004-0017-5.

    Article  Google Scholar 

  4. Geramipour T, and Oveisi H, Trans Nonferrous Met Soc China (English Ed) 27 (2017) 1569–1579. https://doi.org/10.1016/S1003-6326(17)60178-X.

    Article  CAS  Google Scholar 

  5. Pagalank P, April S, Francisco S, Schwartz D S, and Evans A G, in Porous and Cellular Materials for Structural Applications (1998). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Porous+and+Cellular+Materials+for+structural+applications#0.

  6. Yamada Y, Shimojima K, Sakaguchi Y, Mabuchi M, Nakamura M, Asahina T, Mukai T, Kanahashi H, and Higashi K, J Mater Sci Lett 18 (1999) 1477. https://doi.org/10.1023/A:1006677930532.

    Article  CAS  Google Scholar 

  7. Matz A M, Mocker B S, Müller D W, Jost N, and Eggeler G, Adv Mater Sci Eng 10 (2014) 50. https://doi.org/10.1155/2014/421729.

    Article  CAS  Google Scholar 

  8. Cao F, Li H, Ning Z, Jia Y, Gu X, Yu L, Liu Z, and Sun J, Mater Res 18 (2015) 89. https://doi.org/10.1590/1516-1439.328414.

    Article  CAS  Google Scholar 

  9. Elzey D M, and Wadley H N G, Acta Materialia 49 (2001) 849. https://doi.org/10.1016/S1359-6454(00)00395-5

  10. Mirzaei M, and Paydar M H, Mater Des 121 (2017) 442. https://doi.org/10.1016/j.matdes.2017.02.069.

    Article  CAS  Google Scholar 

  11. Queheillalt D T, Hass D D, Sypeck D J, and Wadley H N G, J Mater Res 16 (2001) 1028. https://doi.org/10.1557/JMR.2001.0143.

    Article  CAS  Google Scholar 

  12. Banhart J, Prog Mater Sci 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5.

    Article  CAS  Google Scholar 

  13. Yuan L, Ding S, and Wen C, Bioact Mater 4 (2019) 56. https://doi.org/10.1016/j.bioactmat.2018.12.003.

    Article  Google Scholar 

  14. Zhao Y Y, and Sun D X, Scr Mater 44 (2001) 105. https://doi.org/10.1016/S1359-6462(00)00548-0.

    Article  CAS  Google Scholar 

  15. Waters C, Ajinola S, and Salih M, Am J Eng Appl Sci 9 (2016) 155. https://doi.org/10.3844/ajeassp.2016.155.165.

    Article  Google Scholar 

  16. Mohammed S H, Eng Tech J 34 (2016) 697.

    Google Scholar 

  17. Michailidis N, and Stergioudi F, Mater Des 32 (2011) 1559. https://doi.org/10.1016/j.matdes.2010.09.029.

    Article  CAS  Google Scholar 

  18. Bafti H, and Habibolahzadeh A, Mater Des 31 (2010) 4122. https://doi.org/10.1016/j.matdes.2010.04.038.

    Article  CAS  Google Scholar 

  19. Jamal N A, Tan A W, Yusof F, Katsuyoshi K, Hisashi I, Singh S, and Anuar H, Materials (Basel) 9 (2016) 1. https://doi.org/10.3390/ma9040254.

    Article  CAS  Google Scholar 

  20. Lee B, Lee T, Lee Y, Lee D J, Jeong J, Yuh J, Oh S H, Kim H S, and Lee C S, Mater Des 57 (2014) 712. https://doi.org/10.1016/j.matdes.2013.12.078.

    Article  CAS  Google Scholar 

  21. Suffin N S A, Seman A A, and Hussain Z, Sains Malays 42 (2013) 1755.

    CAS  Google Scholar 

  22. ASTM International, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle, Astm B962–13. i (2013) 1. https://doi.org/10.1520/B0962-13.2.

  23. Sukumar V R, Golla B R, Shaik M A, Yadav A, Sarath Chandra T D, and Khaple S, rans Indian Inst Metals 72 (2019) 935. https://doi.org/10.1007/s12666-018-01556-1.

    Article  CAS  Google Scholar 

  24. Yao Z, and Marck M, Mater Sci Eng A 192–193 (1995) 9940. https://doi.org/10.1016/0921-5093(95)03345-9.

    Article  Google Scholar 

  25. Surace R, De Filippis L A C, Ludovico A D, and Boghetich G, Mater Des 30 (2009) 1878. https://doi.org/10.1016/j.matdes.2008.09.027.

    Article  CAS  Google Scholar 

  26. Jamaludin S B, Rushdi N M F M, Abdullah A, and Hussin K, Adv Mater Res 795 (2013) 102. https://doi.org/10.4028/www.scientific.net/AMR.795.102.

    Article  CAS  Google Scholar 

Download references

Funding

Ministry of Human Resource and Development, Government of India is gratefully acknowledged for the financial support to procure hot press equipment under plan grants (Departmental Plan-Grant Funds Code No: P828) that is used in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahma Raju Golla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R.M., Golla, B.R. Effect of Space Holder on Porosity, Structure and Mechanical Properties of Al Processed via Powder Metallurgy. Trans Indian Inst Met 74, 2379–2386 (2021). https://doi.org/10.1007/s12666-021-02330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02330-6

Keywords

Navigation