Skip to main content
Log in

Magnetic Targeting Carrier Applications of Bismuth-Doped Nickel Ferrites Nanoparticles by Co-precipitation Method

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

A Correction to this article was published on 05 March 2022

This article has been updated

Abstract

Bismuth substituted nickel ferrite (NiFe2−xBixO4 at x = 0.0–1.0) nanoparticles are synthesised by co-precipitation method. The crystal structure, grain size, morphology and magnetic properties are analysed by using XRD, FTIR, SEM, and VSM. XRD confirm the crystalline nature with single-phase cubic spinel structure. The average crystallite size calculated using Debye Scherrer and modified Scherrer formula is in the range of 20–65 nm. SEM image manifests that the particles are agglomerated and with non-uniformity shape. The presence of elemental composition such as Ni, Fe, Bi and O has been confirmed by EDX. In FTIR spectra, tetrahedral (A) and octahedral (B) sites are found in the range of 525–620 cm−1 and 460–465 cm−1, respectively. Their magnetic properties are scrutinized using VSM. At x = 0, the prepared nanoparticles are very useful for magnetic targeting carriers. The coercivity, saturation magnetization, remanence, squareness ratio, Bohr magneton and Curie temperature values decrease as the bismuth content increases. M–T curve reveals the superparamagnetic behaviour at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. H.Elmoussaoui, M.Hamedoun, O.Mounkachi, A.Benyoussef, R.Masrour, E.K.Hlil, New results on magnetic properties of tin-ferrite nanoparticles, J.supercondnovmagn. 25 (2012) 1995-2002.

    Article  CAS  Google Scholar 

  2. S.Singhal, S.Jauhar, N.Lakshmi, S.Bansal, Mn3+ substituted Co–Cd ferrites, CoCd0.4MnxFe1.6−xO4 (0.1 ⩽ x ⩽ 0.6):Cation distribution, structural, magnetic and electrical properties,J. Mol.Struct.1038 (2013) 45-51.

    Article  CAS  Google Scholar 

  3. D.Varshney, K.Verma, Substitutional effect on structural and dielectric properties of Ni1−xAxFe2O4 (A = Mg, Zn) mixed spinel ferrites, Mater. Chem. Phys.140 (2013) 412-418.

    Article  CAS  Google Scholar 

  4. K.Verma, A.Kumar, D.Varshney, Effect of Zn and Mg doping on structural, dielectric and magnetic properties of tetragonal CuFe2O4, Curr. Appl. Phys. 13 (2013) 467-473.

    Article  Google Scholar 

  5. M.A.Gabal, A.M.Abdel-Daiem, Y.M.AlAngari, I.M.Ismail,Influence of Al-substitution on structural, electrical and magnetic properties of Mn–Zn ferrites nanopowders prepared via the sol–gel auto-combustion method, Polyhedron.57 (2013) 105-111.

    Article  CAS  Google Scholar 

  6. Krutika L. Routray and Dhrubananda Behera, Structural and Dielectric Properties of Bismuth Doped Cobalt Nano Ferrites Prepared by Sol-Gel Auto Combustion Method, IOP Conf. Series: Materials Science and Engineering. 178 (2017) 012007(1-11).

    Article  Google Scholar 

  7. M. Banerjee, A. Mukherjee, S. Chakrabarty, S. Basu and M. Pal, Bismuth-Doped Nickel Ferrite Nanoparticles for Room Temperature Memory Devices, : ACS Appl. Nano Mater. 2 (2019) 7795−7802

    CAS  Google Scholar 

  8. M. Pardavi-Horvath, Microwave applications of soft ferrites, J. Magn. Magn. Mater., 215-216 (2000) 171–183.

    Article  Google Scholar 

  9. N. Gupta, M.C. Dimri, S.C. Kashyap, D.C. Dube, Processing and properties of cobalt-substituted lithium ferrite in the GHz frequency range, Ceram Int. 31 (2005) 171–176.

    Article  CAS  Google Scholar 

  10. M.P. Sharrock, Particulate Magnetic Recording Media: A ReviewIEEE Trans. Magn.,25(1989) 4374–4389.

    Article  CAS  Google Scholar 

  11. Mohammad Javad Nasr Isfahani, Parisa Nasr Isfahani, KlebsonLucenildo Da Silva, Armin Feldhoff, Vladimir Sepelak, Structural and magnetic properties of NiFe2-xBixO4 (x = 0, 0.1, 0.15) nanoparticles prepared via sol–gel method, Ceramics International, 37(2011) 1905–1909.

  12. K.Praveena, S.Srinath, Dielectric and Magnetic Properties of NiFe2-xBixO4Nanoparticles, Advanced Science, Engineering and Medicine. 6(2014) 1–7.

    Article  Google Scholar 

  13. T.Vigneswari, P.Raji, Structural and magnetic properties of calcium doped nickel ferrite nanoparticles by co-precipitation method, Journal of Molecular Structure. 1127 (2017) 515-521.

    Article  CAS  Google Scholar 

  14. T.Vigneswari, P.Raji, Structural, magnetic and optical properties of Al-substituted nickel ferrite nanoparticles, International Journal of Materials Research. 109 (2018) 413-421.

    Article  CAS  Google Scholar 

  15. T.Vigneswari, P.Raji, Structural and magnetic properties of lead doped nickel ferrite nanoparticles using co-precipitation method, Inorganic and Nano-metal chemistry. 49 (2019) 354-362.

    Article  CAS  Google Scholar 

  16. Deng Ni, Zhou Lin, Peng Xiaoling, Wang Xinqing, GeHongliang, Preparation and Characterization of Nickel-Zinc Ferrites by a Solvothermal Method, Rare Metal Materials and Engineering, 44 (2015) 2126-2131

    Article  Google Scholar 

  17. S.K.Emdadul Islam, Journal of nano and electronic physics. 6 (2014) 01008–1

  18. Shyam K.Gore, Rajaram S.Mane, Mu. Naushad, Santosh S. Jadhav, Manohar K. Zate, Z. A. Alothman, Biz K. N. Hui, Influence of Bi3 + doping on the magnetic and Mossbauer properties of spinel cobalt ferrite. Dalton transactions. 44 (2015) 6384.

  19. Ahmad Monshi, Mohammad Reza Foroughi, Mohammad Reza Monshi, World Journal of Nano Science and Engineering 2(2012)154.

  20. S.S.Bhatu, V.K.Lakhani, A.R.Tanna, N.H.Vasoya, J.U.Buch, P.U.Sharma, U.N.Trivedi, H.H.Joshi, K.B.Modi, Effect of nickel substitution on structural, infrared and elastic properties of lithium ferrite, International journal of pure & applied physics. 45 (2007) 596-608.

    CAS  Google Scholar 

  21. E.W.Gorter, Dependence on Temperature of the Distribution of Cations in Oxide Spinels, Phillips Res. Rept. 119 (1961) 169-170.

    Google Scholar 

  22. U.V.Chhaya, B.V.Mistry, K.H.Bhavsar, M.R.Gadhvi, V.K.Lakhani, K.B.modi, U.S.Joshi, International journal of pure & applied physics. 49 (2011) 833.

  23. AbdulsameeF.Abdulaziz, KhalafI.Khaleel, NabeelA.Bakr, Tikrit Journal of Pure Science. 16 (2011) 216.

  24. M.C.Chhantbar, U.N.Trivedi, P.V.Tanna, H.J.Shah, R.P.Vara, H.H.Joshi, K.B.Modi, Infrared spectral studies of Zn-substituted CuFeCrO4 spinel ferrite system,Indian J. Phys. 78 (2004) 321-326.

    Google Scholar 

  25. DipaliS.Nikam, Swati V.Jadhav, VishwajeetM.Khot, R.A.Bohara, Chang K.Hong, SawantaS.Mali, S.H.Pawar, RSC Advances. 5 (2015) 2338.

  26. Surender Kumar, Tukaram J. Shinde, Pramod N. Vasambekar, Microwave synthesis and characterization of nanocrystalline Mn-Zn ferrites, Adv. Mat. Lett. 4(5) (2013) 373-377.

    Article  Google Scholar 

  27. Surender Kumar, Tukaram J. Shinde, Pramod N. Vasambekar, Microwave synthesis and characterization of nanocrystalline Mn-Zn ferrites, Adv. Mat. Lett. 4 (2013) 373-377.

    Article  Google Scholar 

  28. T.Shanmugavel, S.Gokul Raj, G. Ramesh Kumar, G.Rajarajan, D.Saravanan, Journal of king saud university, 27 (2015) 176.

  29. M.Rahimia, M.Eshraghi, P.Kamelia, Structural and magnetic characterizations of Cd substituted nickel ferrite nanoparticles, Ceramic international, 40 (2014) 15569-15575.

    Article  Google Scholar 

  30. E.Manova, T.Tsoncheva,C.Estournes, D.Paneva, K.Tenchev, I.Mitov,L.Petrov, Nanosized iron and iron-cobalt spinel oxides as catalysts for methanol decomposition, ApplCatal A. 300 (2006) 170-180.

    CAS  Google Scholar 

  31. J.Zhi, Y.Wang, Y.Lu, J.Ma, G.Luo, In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion, ReacFunctPolym. 66 (2006) 1552-1558.

    CAS  Google Scholar 

  32. M.Rahimia, M.Eshraghi, P.Kameli, Structural and magnetic characterizations of Cd substituted nickel ferrite nanoparticles, Ceramics International. 40 (2014) 15569–15575.

    Article  Google Scholar 

  33. N.H.R.C.Kambale, K.M.Song, Y.S.Koo, J. Appl. Phys. 110 (2011) 053910–1.

  34. ErumPervaiz, I.H.Gul, International journal of current engineering and technology, 2 (2012) 377.

  35. G.N.Chavan, P.B.Belavi, L.R.Naik, B.K.Bammannavar, K.P.Ramesh, Sunil kumar, International journal of scientific and technology research. 2 (2013) 82

  36. P.B.Belavi, G.N.Chavan, L.R.Naika, R.Somashekar, R.K.Kotnala, Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites, Materials Chemistry and Physics. 132 (2012) 138–144.

    Article  CAS  Google Scholar 

  37. S.M.Patange, S.E.Shirsath, B.G.Toksha, S.S.Jadhav, S.J.Shukla, K.M.Jadhav, Cation distribution by Rietveld, spectral and magnetic studies of chromium substituted nickel ferrites, J. Appl. Phys. A. 95 (2008) 429–434.

    Article  Google Scholar 

  38. Lawrence Kumar, ManoranjanKar, Journal of Magnetism and Magnetic Materials. 323 (2011) 2042.

  39. Hayoung Yoon, Ji Sung Lee, Ji Hyun Min, JunHua Wu, Young Keun Kim, Nanoscale Research Letters. 8 (2013) 1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vigneswari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to inclusion of new author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigneswari, T., Raji, P. & Thiruramanathan, P. Magnetic Targeting Carrier Applications of Bismuth-Doped Nickel Ferrites Nanoparticles by Co-precipitation Method. Trans Indian Inst Met 74, 2255–2265 (2021). https://doi.org/10.1007/s12666-021-02312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02312-8

Keywords

Navigation