Skip to main content
Log in

Mechanical Properties of the Ti2AlNb Intermetallic: A Review

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Ti2AlNb intermetallics are promising next-generation aerospace materials. Advancement in non-conventional manufacturing methods has made the fabrication of these intermetallics economical. However, post-heat treatments are required to obtain desired mechanical properties, which further depend on the microstructural features of the intermetallics. Extensive studies have been conducted to understand the relation between mechanical behavior and microstructural features of this intermetallic. This review presents the effect of various microstructural features of (a) fully B2 and α2 + B2, (b) fully lamellar, (c) bimodal lamellar, (d) equiaxed and duplex, and (e) plate-like O phase on room temperature properties, namely strength, ductility, and fracture mechanisms. Moreover, the review emphasizes the special microstructural features that are required to enhance the mechanical properties of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Peters M, Kumpfert J, Ward C H, and Leyens C Adv Eng Mater 5 (2003) 419.

    Article  CAS  Google Scholar 

  2. Gad S C, Titanium, Encycl Toxicol Third (Ed) (2014) 584.

  3. Banerjee D, Prog Mater Sci 42 (1997) 135.

    Article  CAS  Google Scholar 

  4. Banerjee D, and Williams J C, Acta Mater 61 (2013) 844.

    Article  CAS  Google Scholar 

  5. Banerjee D, and Williams J C, Def Sci J (1986).

  6. Banerjee D, Gogia A K, Nandi T K, and Joshi V A, Acta Metall 36 (1988) 871.

    Article  CAS  Google Scholar 

  7. Hao Y L, Xu D S, Cui Y Y, and Yang R, Li D, Acta Mater 47 (1999) 1129.

    Article  CAS  Google Scholar 

  8. Sastry S M L, and Lipsitt H A, Metall Trans A 8 (1977) 1543.

    Article  Google Scholar 

  9. Boyer R R, Mater Sci Eng A 213 (1996) 103.

    Article  Google Scholar 

  10. Ahmed Y M, Salleh K, Sahari M, Ishak M, and Khidhir B A, 3 (2014) 1351.

  11. Veiga C, Loureiro A J R, and Davim J P, Rev Adv Mater Sci 32 (2012) s. 133.

  12. Lipsitt H A, Mater Res Soc Symp Proc 39 (1985) 351.

    Article  CAS  Google Scholar 

  13. Williams J C, and Starke E A, Acta Mater 51 (2003) 5775.

    Article  CAS  Google Scholar 

  14. Froes F H, Suryanarayana C, and Eliezer D, J Mater Sci 27 (1992) 5113.

    Article  CAS  Google Scholar 

  15. Huda Z, and Edi P, Mater Des 46 (2013) 552.

    Article  CAS  Google Scholar 

  16. Choubey G, Suneetha L, and Pandey K M, Mater Today Proc 5 (2018) 1321.

    Article  CAS  Google Scholar 

  17. Wu H, Zhang P, Zhao H, Wang and L, Xie A, Appl Surf Sci 257 (2011) 1835.

    Article  CAS  Google Scholar 

  18. Peng J, Mao Y, Li S, and Sun X, Mater Sci Eng A 299 (2001) 75.

    Article  Google Scholar 

  19. Germann L, Banerjee D, Guédou J Y, and Strudel J L, Intermetallics 13 (2005) 920.

    Article  CAS  Google Scholar 

  20. Huang Y, Liu Y, Li C, Ma Z, Yu L, and Li H, Vacuum 161 (2019) 209.

    Article  CAS  Google Scholar 

  21. Banerjee D, Metall A, Roy P E, Davis C, and Magee J, United States Patent 19 (1991).

  22. Pathak A, and Singh A K, Solid State Commun 204 (2015) 9.

    Article  CAS  Google Scholar 

  23. Xue C, Zeng W, Wang W, Liang X, and Zhang J, Mater Sci Eng A 573 (2013) 183.

    Article  CAS  Google Scholar 

  24. Muraleedharan K, Nandy T K, Banerjee D, and Lele S, Intermetallics 3 (1995) 187.

    Article  CAS  Google Scholar 

  25. Wang S, Xu W, Zong Y, Zhong X, and Shan D, Metals (Basel) 8 (2018).

  26. Gogia A K, Banerjee D, and Nandy T K, Metall Trans A 21 (1990) 609.

    Article  Google Scholar 

  27. Cowen C J, and Boehlert C J, Intermetallics 14 (2006) 412.

    Article  CAS  Google Scholar 

  28. Boehlert C J, Mater Sci Eng A 279 (2000) 118.

    Article  Google Scholar 

  29. Kim Y W, Jom 41 (1989) 24.

    Article  CAS  Google Scholar 

  30. Wang W, Zeng W, Xue C, Liang X, and Zhang J, Intermetallics 56 (2015) 79.

    Article  CAS  Google Scholar 

  31. Emura S, Araoka A, and Hagiwara M, Scr Mater 48 (2003) 629.

    Article  CAS  Google Scholar 

  32. Popovich A A, Sufiiarov V S, Polozov I A , and Grigoriev A V, Rus J Non-Ferrous Met 60 (2019) 186.

    Article  Google Scholar 

  33. Zhou Y H, Li W P, Wang D W, Zhang L, Ohara K, Shen J, Ebel T, and Yan M, Acta Mater 173 (2019) 117.

    Article  CAS  Google Scholar 

  34. Polozov I, Sufiiarov V, and Shamshurin A, Mater Lett 243 (2019) 88.

    Article  CAS  Google Scholar 

  35. Fischer M, Joguet D, Robin G, Peltier L, and Laheurte P, Mater Sci Eng C 62 (2016) 852.

    Article  CAS  Google Scholar 

  36. Kenel C, Dasargyri G, Bauer T, Colella A, Spierings A B, Leinenbach C, and Wegener K, Mater Des 134 (2017) 81.

    Article  CAS  Google Scholar 

  37. Li M, Cai Q, Liu Y, Ma Z, and Wang Z, Mater Des 20 (2018) 1.

    Google Scholar 

  38. Cai Q, Li M, Zhang Y, Liu Y, Ma Z, Li C, and Li H, Mater Charact 145 (2018) 413.

    Article  CAS  Google Scholar 

  39. Yeqing Z, Di Z, Yanbo S U N, Zengjie W, Ruixiao Z, and Chaoli M A, Rare Met 30 (2011) 331.

    Article  CAS  Google Scholar 

  40. Chen R, Fang H, Chai D, Yang Y, Su Y, Ding H, Guo J, and Fu H,Mater Sci Eng A 687 (2017) 181.

    Article  CAS  Google Scholar 

  41. Zhang K, Lei Z, Chen Y, Yang K, and Bao Y, Mater Sci Eng A 744 (2019) 436.

    Article  CAS  Google Scholar 

  42. Huang Y, Liu Y, Zhang Y, and Liang H, J Alloys Compd 842 (2020) 155794.

    Article  CAS  Google Scholar 

  43. Wang S, Xu W, Sun W, Zong Y, Chen Y, and Shan D, Metals (Basel) 9 (2019) 1.

    Google Scholar 

  44. Zheng Y, Zeng W, Li D, Xu J, Ma X, Liang X, and Zhang J, Mater Des 158 (2018) 46.

    Article  CAS  Google Scholar 

  45. Lei Z, Zhang K, Zhou H, Ni L, and Chen Y, J Mater Process Technol 255 (2018) 477.

    Article  CAS  Google Scholar 

  46. Chen X, Xie F Q, Ma T J, Li W Y, Wu X Q, J Alloys Compd 646 (2015) 490.

    Article  CAS  Google Scholar 

  47. Lei Z, Zhou H, Chen Y, Zhang K, and Li B, J Mater Eng Perform 28 (2019) 5009.

    Article  CAS  Google Scholar 

  48. Liang C, Zhao J F, Chang J, and Wang H P, J Alloys Compd 836 (2020) 155538.

    Article  CAS  Google Scholar 

  49. Xue C, Zeng W, Xu B, Liang X, Zhang J, and Li S, Intermetallics 29 (2012) 41.

    Article  CAS  Google Scholar 

  50. Strychor R, Williams J C, and Soffa W A, Metall Trans A 19 (1988) 225.

    Article  Google Scholar 

  51. Muraleedharan K, Banerjee D, Banerjee S, and Lele S, Philos Mag A 71 (1995) 1011.

    Article  CAS  Google Scholar 

  52. Wei W, Weidong Z, Chen X, Xiaobo L, and Jianwei Z, Mater Sci Eng A 618 (2014) 288.

    Article  CAS  Google Scholar 

  53. Boehlert C J, Majumdar B S, Seetharaman V, and Miracle D B, Metall Mater Trans A (1999) 2305.

  54. Zheng Y, Zeng W, Li D, Zhao Q, Liang X, Zhang J, and Ma X, J Alloys Compd 709 (2017) 511.

    Article  CAS  Google Scholar 

  55. Zhou Y, Cao J X, Huang X, Wang B, and Mi G B, Mater Sci Forum 849 (2016) 368.

    Article  Google Scholar 

  56. Wang W, Zeng W, Liu Y, Xie G, and Liang X, J Mater Eng Perform 27 (2018) 293.

    Article  CAS  Google Scholar 

  57. Chen X, Weidong Z, Wei W, Xiaobo L, and Jianwei Z, Mater Sci Eng A611 (2014) 320.

    Article  CAS  Google Scholar 

  58. Hagiwara M, Emura S, Araoka A, Kong B O, and Tang F, Met Mater Int 9 (2003) 265.

    Article  CAS  Google Scholar 

  59. Shao B, Zong Y, Wen D, Tian Y, and Shan D, Mater Charact 114 (2016) 75.

    Article  CAS  Google Scholar 

  60. Boehlert C J, Metall Mater Trans A 32 (2001) 1977.

    Article  Google Scholar 

  61. Wang W, Zeng W, Li D, Zhu B, Zheng Y, and Liang X, Mater Sci Eng A 662 (2016) 120.

    Article  CAS  Google Scholar 

  62. Wang W, Zeng W, Xue C, Liang X, and Zhang J, Intermetallics 45 (2014) 29.

    Article  CAS  Google Scholar 

  63. Wu B, Zinkevich M, Aldinger F, Chu M, and Shen J, Intermetallics 16 (2008) 42.

    Article  CAS  Google Scholar 

  64. Shao B, Shan D, Guo B, and Zong Y, Int J Plast 113 (2019) 18.

    Article  CAS  Google Scholar 

  65. Popille F, and Douin J, J Phys IV JP 6 (1996) 211.

    Google Scholar 

  66. Wei Z Y, Hu K M, Sa B S, and Wu B, Rare Met (2017) 1.

  67. Chen X, Weidong Z, Wei W, Xiaobo L, and Jianwei Z, Mater Sci Eng A 587 (2013) 54.

    Article  CAS  Google Scholar 

  68. Lin P, He Z, Yuan S, Shen J, Huang Y, and Liang X, J Alloys Compd 578 (2013) 96.

    Article  CAS  Google Scholar 

  69. yu Zhang H, Li C, Qing Ma Z, Ming Yu L, jun Li H, and chang Liu Y,Int J Miner Metall Mater 25 (2018) 1191

Download references

Acknowledgements

The authors are grateful to the Indian Institute of Technology Ropar and MHRD (Ministry of Human Resource and Development), Government of India, for providing Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kushagra Goyal or Neha Sardana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, K., Sardana, N. Mechanical Properties of the Ti2AlNb Intermetallic: A Review. Trans Indian Inst Met 74, 1839–1853 (2021). https://doi.org/10.1007/s12666-021-02307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02307-5

Keywords

Navigation