Skip to main content
Log in

Conventional and Additively Manufactured Stainless Steels: A Review

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

For the last three decades, enormous manufacturing processes have been widely employed in the field of transportation (aviation, automobile, and marine) as well as various industrial sectors. Among the invented techniques, conventional manufacturing plays a versatile and cost-effective role, but additive manufacturing (AM) possesses a more significant advantage in handling complicated parts or complex geometrical structures. The conventional processes were used from ancient times until the development of other advanced techniques. In the recent development of technology, AM technology has shown a tremendous change in the manufacturing field. The process of development in AM began with polymers, then to composites, and advanced to nanocomposites continuously. AM provides a waste-free production management system with enhanced processes. Therefore, this detailed and compendious review describes the different stainless steels fabricated through conventional and AM techniques. It is evident that AM proves better than other several conventional techniques by three-dimensional (3D) printing of quality and complex stainless-steel components that are impossible to manufacture through other methods. Notwithstanding, there is still a need to improve AM technique by reducing the manufacturing cost, supporting mass production, and printing large stainless-steel components. With an increase in the invention of various efficient state-of-the-art engineering software, robots in manufacturing, artificial intelligence, and smart manufacturing, the aforementioned drawbacks of AM technique/3D printing of various stainless-steel structures will be soon eradicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Klančnik G, Steiner petrovič D, and Medved J, J Min Metall Sect B Metall. 48 (2012) 383.

    Google Scholar 

  2. Kim S H, Moon H K, Kang T, and Lee C S, Mater Sci Eng A 356 (2003) 390.

    Google Scholar 

  3. Akinwamide S O, Akinribide O J, and Mafafo M, Mater Today Proc 28 (2019) 384.

    Google Scholar 

  4. Zarei F, Nuranian H, and Shirvani K, Mater Res Express 6 (2019).

  5. Basak S, Sahu K K, Sharma S K, and Majumdar J D, Procedia Manuf 7 (2017) 647.

    Google Scholar 

  6. Wang L, Xue J, and Wang Q, Mater Sci Eng A 751 (2019) 183.

    CAS  Google Scholar 

  7. Doomra A, Sandhu S S, and Singh B, Metall Mater Eng 26 (2020) 279.

    Google Scholar 

  8. Gülsoy H Ö, and Salman S, J Mater Sci 40 (2005) 3415.

    Google Scholar 

  9. Haušild P, Berdin C, Bompard P, and Verdière N, Int J Press Vessel Pip 78 (2001) 607.

    Google Scholar 

  10. Weinberger T, Enzinger N, and Cerjak H, Sci Technol Weld Join 14 (2009) 210.

    CAS  Google Scholar 

  11. Kim S J, Lee C G, Lee T H, and Oh C S, Scr Mater 48 (2003) 539.

    CAS  Google Scholar 

  12. Cheng X, Jiang Z, and Monaghan B J, Corros Sci 108 (2016) 11.

    CAS  Google Scholar 

  13. Mallaiah G, Kumar A, Reddy P R, and Reddy G M, Mater Des 36 (2012) 443.

    CAS  Google Scholar 

  14. Huang W, Zhang Y, Dai W, and Long R, Mater Sci Eng A 758 (2019) 60.

    CAS  Google Scholar 

  15. Li C X, and Bell T, Corros Sci 48 (2006) 2036.

    CAS  Google Scholar 

  16. Gausemeier J, Echterhoff N, Kokoschka M, and Wall M, Univ Paderborn, Heinz Nixd Inst. (2011).

  17. Newell M A, Davies H A, Messer P F, and Greensmith D J, Powder Metall 48 (2005) 227.

    CAS  Google Scholar 

  18. Pantazopoulos G, and Vazdirvanidis A, Eng Fail Anal 16 (2009) 1623.

    CAS  Google Scholar 

  19. Heaney D F, Handbook of Metal Injection Molding (2012).

  20. Chung C-Y, and Tzeng Y-C, Mater Lett 237 (2019) 228.

    CAS  Google Scholar 

  21. Schroeder R, Hammes G, Binder C, and Klein A N, Mater Res 14 (2011) 564.

    CAS  Google Scholar 

  22. Chen X, Li J, Cheng X, He B, Wang H, and Huang Z, Mater Sci Eng A 703 (2017) 567.

    CAS  Google Scholar 

  23. Barriere T, Liu B, and Gelin J C, J Mater Process Technol 143–144 (2003) 636.

    Google Scholar 

  24. Machaka R, IOP Conf Ser Mater Sci Eng 430 (2018) 0.

  25. Gelin J C, Barriere T, and Dutilly M, CIRP Ann - Manuf Technol 48 (1999) 179.

    Google Scholar 

  26. Costa I, Rogero S O, Saiki M, Marques R A, and Rogero J R, Corrosion resistance and cytotoxicity study of 17-4PH steels produced by conventional metallurgy and powder injection molding. Mater. Sci. Forum (2008).

  27. Okubo K, Tanaka S, and Ito H, Microsyst Technol 16 (2010) 2037.

    Google Scholar 

  28. Imgrund P, Rota A, and Simchi A, J Mater Process Technol 200 (2008) 259.

    CAS  Google Scholar 

  29. Mathew BA, and Mastromatteo R, Met Powder Rep 57 (2002) 20.

    Google Scholar 

  30. Yu K, Ye S, Mo W, et al., J Manuf Process 50 (2020) 498.

    Google Scholar 

  31. Piotter V, Gietzelt T, and Merz L, Sadhana - Acad Proc Eng Sci 28 (2003) 299.

    CAS  Google Scholar 

  32. Piotter V, Bauer W, Knitter R, Mueller M, Mueller T, and Plewa K, Microsyst Technol 17 (2011) 251.

    CAS  Google Scholar 

  33. Heaney D F, Zauner R, Binet C, Cowan K, and Piemme J, Powder Metall 47 (2004) 145.

    CAS  Google Scholar 

  34. Li Y, Li L, and Khalil K A, J Mater Process Technol 183 (2007) 432.

    CAS  Google Scholar 

  35. Ammosova L, Mönkkönen K, and Suvanto M, Precis Eng 62 (2020) 89.

    Google Scholar 

  36. Huang P H, and Guo M J, Mater Res Innov 19 (2015) S977.

    Google Scholar 

  37. Kumar P, Ahuja I S, and Singh R, J Manuf Process 21 (2016) 160.

    Google Scholar 

  38. Frömert J, Lott T G, Matz A M, and Jost N, Adv Eng Mater 21 (2019) 1.

    Google Scholar 

  39. Previtali B, Pocci D, and Taccardo C, Compos Part A Appl Sci Manuf 39 (2008) 1606.

    Google Scholar 

  40. Liu C, Jin S, Lai X, He B, and Li F, Int J Adv Manuf Technol 77 (2015) 1191.

    Google Scholar 

  41. Hao Y, Liu J, Du J, et al., Metals (Basel) (2020).

  42. Wegrzyn T, Weld Int 6 (1992) 690.

    Google Scholar 

  43. Zhong Y, Rännar L E, Liu L, et al., J Nucl Mater 486 (2017) 234.

    CAS  Google Scholar 

  44. Kuo J K, Huang P H, and Guo M J, Int J Adv Manuf Technol 89 (2017) 101.

    Google Scholar 

  45. Li Y Y, Tsai D C, and Hwang W S, Model Simul Mater Sci Eng 16 (2008).

  46. Raza M, Svenningsson R, and Irwin M, Metall Foundry Eng 41 (2015) 85.

    CAS  Google Scholar 

  47. Susan D F, Crenshaw T B, and Gearhart J S, J Mater Eng Perform 24 (2015) 2917.

    CAS  Google Scholar 

  48. Huang P H, and Huang W J, IOP Conf Ser Earth Environ Sci 186 (2018).

  49. Kwon J D, Park J C, Lee Y S, Lee W H, and Park Y W, Nucl Eng Des 198 (2000) 227.

  50. Carter T J, Eng Fail Anal 12 (2005) 237.

    Google Scholar 

  51. Huang P H, Shih L K L, Lin H M, Chu C I, and Chou C S, Int J Adv Manuf Technol 104 (2019) 2911.

    Google Scholar 

  52. Jayet-Gendrot S, Gilles P, and Migné C, Nucl Eng Des 197 (2000) 141.

    CAS  Google Scholar 

  53. Kazior J, Szewczyk-Nykiel A, Pieczonka T, Hebda M, and Nykiel M, Adv Mater Res 811 (2013) 87.

    Google Scholar 

  54. Yao Y H, Wei J F, and Wang Z P, Mater Sci Eng A 551 (2012) 116.

    CAS  Google Scholar 

  55. Yadollahi A, Shamsaei N, Thompson S M, Elwany A, and Bian L, Int J Fatigue 94 (2017) 218.

    CAS  Google Scholar 

  56. Hu L, Peng H, Baker I, Li L, Zhang W, and Ngai T, Mater Charact 152 (2019) 76.

    CAS  Google Scholar 

  57. Meesak T, and Thedsuwan C, Mater Today Proc 5 (2018) 9560.

    CAS  Google Scholar 

  58. Aboulkhair N T, Maskery I, Tuck C, Ashcroft I, and Everitt NM, Mater Sci Eng A 667 (2016) 139.

    CAS  Google Scholar 

  59. Ferreño D, Álvarez JA, Ruiz E, Méndez D, Rodríguez L, and Hernández D, Eng Fail Anal 18 (2011) 256.

    Google Scholar 

  60. Ariza E A, Tschiptschin A P, and Azevedo C R F, Eng Fail Anal 48 (2015) 78.

    CAS  Google Scholar 

  61. Liu H T, Liu Z Y, Qiu Y Q, Cao G M, Li C G, and Wang G D, Mater Charact 60 (2009) 79.

    CAS  Google Scholar 

  62. Şimşir M, Kumruoǧlu L C, and Özer A, Mater Des 30 (2009) 264.

    Google Scholar 

  63. Samal P K, Nandivada N, and Hauer I, Adv Powder Metall Part Mater - 2008, Proc 2008 World Congr Powder Metall Part Mater PowderMet (2008) 7109.

  64. Martins M, and Casteletti L C, Mater Charact 60 (2009) 792.

    CAS  Google Scholar 

  65. Hochanadel P W, Edwards G R, Robino C V, and Cieslak M J, Metall Mater Trans A 25 (1994) 789.

    Google Scholar 

  66. Farrahi G H, Jafarzadeh H, and Esmaeili M A, J Mater Eng Perform 29 (2020) 143.

    CAS  Google Scholar 

  67. Akhtar F, Ali L, Peizhong F, and Shah J A, J Alloys Compd 509 (2011) 8794.

    CAS  Google Scholar 

  68. Keller C, Tabalaiev K, Marnier G, Noudem J, Sauvage X, and Hug E, Mater Sci Eng A 665 (2016) 125.

    CAS  Google Scholar 

  69. Peruzzo M, Beux T D, Ordoñez M F C, Souza R M, and Farias M C M, Corros Sci 129 (2017) 26.

    CAS  Google Scholar 

  70. Balázsi C, Ben Z H R, Furko M, et al., Fusion Eng Des 145 (2019) 46.

  71. Peruzzo M, Serafini F L, Ordoñez M F C, Souza R M, and Farias M C M, Wear 422423 (2019) 108.

    Google Scholar 

  72. Ordoñez M F C, Amorim C L G, Krindges I, et al., Surf Coatings Technol 374 (2019) 700.

    Google Scholar 

  73. Dudek A, and Włodarczyk R, Mater Sci Eng C 33 (2013) 434.

    CAS  Google Scholar 

  74. Pandya S, Ramakrishna K S, Raja Annamalai A, and Upadhyaya A, Mater Sci Eng A 556 (2012) 271.

    CAS  Google Scholar 

  75. Yang X, Bai Y L, Xu M, and Guo S J, J Iron Steel Res Int 20 (2013) 84.

  76. García C, Martín F, Blanco Y, and Aparicio M L, Corros Sci 52 (2010) 3725.

    Google Scholar 

  77. Munez C J, Utrilla M V, and Urena A, J Alloys Compd 463 (2008) 552.

    CAS  Google Scholar 

  78. Almathami A, and Brochu M, J Mater Process Technol 210 (2010) 2119.

    CAS  Google Scholar 

  79. Wen Y, Liu P, Xie L, et al., J Mater Eng Perform 29 (2020) 182.

    CAS  Google Scholar 

  80. Qin E, Chen G, Tan Z, and Wu S, J Mater Eng Perform 24 (2015) 4578.

    CAS  Google Scholar 

  81. Makhmutov T, Razumov N, Kim A, et al., Mater Today Proc 30 (2020) 768.

    CAS  Google Scholar 

  82. Nur Acar A, Kadir Ekşi A, and Ekicibil A, J Mol Struct 1198 (2019).

  83. Tosangthum N, Coovattanachai O, Krataitong R, Morakotjinda M, Daraphan A, and BVART, Chiang Mai J Sci 33 (2006) 53.

    CAS  Google Scholar 

  84. Zhang B, Dembinski L, and Coddet C, Mater Sci Eng A 584 (2013) 21.

    CAS  Google Scholar 

  85. Protopappas E, Smal C A, and Lange F G D, Proc 1st Int Cr Steel Alloy Congr 2 (1992) 97.

  86. Flipon B, Keller C, de la Cruz L G, Hug E, and Barbe F, Mater Sci Eng A 729 (2018) 249.

    CAS  Google Scholar 

  87. Olsén J, Shen Z, Liu L, Koptyug A, and Rännar L E, Mater Charact 141 (2018) 1.

    Google Scholar 

  88. Bartolomeu F, Buciumeanu M, Pinto E, et al., Addit Manuf 16 (2017) 81.

    CAS  Google Scholar 

  89. Tolosa I, Garciandía F, Zubiri F, Zapirain F, and Esnaola A, Int J Adv Manuf Technol 51 (2010) 639.

    Google Scholar 

  90. Koseski R P, Suri P, Earhardt N B, German R M, and Kwon Y S, Mater Sci Eng A (2005).

  91. Gåård A, Krakhmalev P, and Bergström J, J Alloys Compd 421 (2006) 166.

    Google Scholar 

  92. Evans R S, Bourell D L, Beaman J J, and Campbell M I, Rapid Prototyp J 11 (2005) 37.

    Google Scholar 

  93. Levy A, Miriyev A, Elliott A, Babu S S, and Frage N, Mater Des 118 (2017) 198.

    CAS  Google Scholar 

  94. Li J, Monaghan T, Nguyen T T, Kay R W, Friel R J, and Harris R A, Compos Part B Eng 113 (2017) 342.

    CAS  Google Scholar 

  95. Herzog D, Seyda V, Wycisk E, and Emmelmann C, Acta Mater 117 (2016) 371.

    CAS  Google Scholar 

  96. Buchbinder D, Meiners W, Pirch N, Wissenbach K, and Schrage J, J Laser Appl 26 (2014) 12004.

    Google Scholar 

  97. Zaeh M F, and Branner G, Prod Eng 4 (2010) 35.

    Google Scholar 

  98. Kalentics N, Boillat E, Peyre P, Ćirić-Kostić S, Bogojević N, and Logé R E, Addit Manuf 16 (2017) 90.

    CAS  Google Scholar 

  99. Rafi H K, Pal D, Patil N, Starr T L, and Stucker B E, J Mater Eng Perform 23 (2014) 4421.

    CAS  Google Scholar 

  100. Wang X, and Chou K, J Manuf Process 48 (2019) 154.

    Google Scholar 

  101. Heigel J C, Phan T Q, Fox J C, and Gnaupel-Herold T H, Procedia Manuf 26 (2018) 929.

    Google Scholar 

  102. Zakay A, and Aghion E, Jom 71 (2019) 1150.

    CAS  Google Scholar 

  103. Rosenthal I, Shneck R, and Stern A, Mater Sci Eng A 729 (2018) 310.

    CAS  Google Scholar 

  104. Kalentics N, de Seijas M O V, Griffiths S, Leinenbach C, and Loge R E, Addit Manuf 33 (2020) 101112.

    CAS  Google Scholar 

  105. Du Plessis A, Glaser D, Moller H, et al., 3D Print Addit Manuf 6 (2019) 245.

  106. Tański T, Brytan Z, and Labisz K, Procedia Eng 74 (2014) 421.

    Google Scholar 

  107. Fredj N B, and Sidhom H, Cryogenics (Guildf) 46 (2006) 439.

  108. Firrao D, Matteis P, Spena P R, and Gerosa R, Mater Sci Eng A 559 (2013) 371. https://doi.org/10.1016/j.msea.2012.08.113.

    Article  CAS  Google Scholar 

  109. Lakshminarayanan A K, Shanmugam K, and Balasubramanian V, J Mater Eng Perform 18 (2009) 917.

    CAS  Google Scholar 

  110. Leuders S, Lieneke T, Lammers S, Tröster T, and Niendorf T, J Mater Res 29 (2014) 1911. https://doi.org/10.1557/jmr.2014.157.

    Article  CAS  Google Scholar 

  111. Wu J-H, and Lin C-K, Metall Mater Trans A 33 (2002) 1715.

    Google Scholar 

  112. Sarkar S, Kumar C S, and Nath A K, Mater Sci Eng A 755 (2019) 235.

    CAS  Google Scholar 

  113. Gao W, Zhang Y, Ramanujan D, et al., CAD Comput Aided Des 69 (2015) 65.

    Google Scholar 

  114. Sequeira Almeida P M, and Williams S, 21st Annu Int Solid Free Fabr Symp - An Addit Manuf Conf SFF (2010) 25.

  115. Liu Y, Liu C, Liu W, et al., Opt Laser Technol 111 (2019) 470.

    CAS  Google Scholar 

  116. Li Y, Hu Y, Cong W, Zhi L, and Guo Z, Ceram Int 43 (2017) 7768.

    CAS  Google Scholar 

  117. Conner B P, Manogharan G P, Martof A N, et al., Addit Manuf 1 (2014) 64.

    Google Scholar 

  118. Kok Y, Tan X P, Wang P, et al., Mater Des 139 (2018) 565.

    CAS  Google Scholar 

  119. Compton B G, and Lewis J A, Adv Mater 26 (2014) 5930.

    CAS  Google Scholar 

  120. Zhang P, Liu J, and To A C, Scr Mater 135 (2017) 148.

    CAS  Google Scholar 

  121. McAndrew A R, Alvarez Rosales M, Colegrove P A, et al., Addit Manuf (2018).

  122. Abe T, and Sasahara H, Precis Eng 45 (2016) 387.

    Google Scholar 

  123. Haden C V, Zeng G, Carter F M, Ruhl C, Krick B A, and Harlow D G, Addit Manuf 16 (2017) 115.

    CAS  Google Scholar 

  124. Yilmaz O, and Ugla A A, Int J Adv Manuf Technol 89 (2017) 13.

    Google Scholar 

  125. Queguineur A, Rückert G, Cortial F, and Hascoët J Y, Weld World 62 (2018) 259.

    CAS  Google Scholar 

  126. Ge J, Lin J, Chen Y, Lei Y, and Fu H, J Alloys Compd 748 (2018) 911.

    CAS  Google Scholar 

  127. Laghi V, Adv Mater Lett 10 (2019) 695.

    Google Scholar 

  128. Peng Y, Liu Z, Chen C, Gong J, and Somers M A J, Mater Sci Eng A 769 (2020) 138524.

    CAS  Google Scholar 

  129. Chen X, Li J, Cheng X, Wang H, and Huang Z, Mater Sci Eng A 715 (2018) 307.

    CAS  Google Scholar 

  130. Dharmendra C, Amirkhiz B S, Lloyd A, Ram G D J, and Mohammadi M, Addit Manuf 36 (2020) 101510.

    CAS  Google Scholar 

  131. Zhang Y, Cheng F, and Wu S, Mater Charact 171 (2021) 110743.

    CAS  Google Scholar 

  132. Caballero A, Ding J, Ganguly S, and Williams S, J Mater Process Technol 268 (2019) 54.

    CAS  Google Scholar 

  133. Dinovitzer M, Chen X, Laliberte J, Huang X, and Frei H, Addit Manuf 26 (2019) 138.

    CAS  Google Scholar 

  134. Ding D, Pan Z, Cuiuri D, and Li H, Int J Adv Manuf Technol 81 (2015) 465.

    Google Scholar 

  135. Eriksson M, Lervåg M, Sørensen C, et al., MATEC Web Conf 188 (2018) 1.

    Google Scholar 

  136. Gualco A, Svoboda H G, Surian E S, and Vedia L A D, Mater Des 31 (2010) 4165.

  137. Mehnen J, Ding J, Lockett H, and Kazanas P, Int J Prod Dev 19 (2014) 2.

    Google Scholar 

  138. Kuo J K, Huang P H, Lai H Y, and Chen J R, Int J Adv Manuf Technol 92 (2017) 1093.

    Google Scholar 

  139. Rodrigues T A, Duarte V, Avila J A, Santos T G, Miranda R M, and Oliveira J P, Addit Manuf 27 (2019) 440.

    CAS  Google Scholar 

  140. A Hosseini V, Högström M, Hurtig K, Valiente Bermejo M A, Stridh L E, and Karlsson L, Weld World 63 (2019) 975.

  141. Rodriguez N, Vázquez L, Huarte I, Arruti E, Tabernero I, and Alvarez P, Weld World 62 (2018) 1083.

    CAS  Google Scholar 

  142. Ahsan M R U, Tanvir A N M, Ross T, Elsawy A, Oh M S, and Kim D B, Rapid Prototyp J 26 (2019) 519.

    Google Scholar 

  143. Koptyug A, Rännar L E, Bäckström M, and Shen Z, Mater Sci Forum 879 (2017) 996.

    Google Scholar 

  144. Popov V V, Katz-Demyanetz A, Kovalevsky A, et al., Lett Mater 8 (2018) 468.

    Google Scholar 

  145. Raghavan S, Nai M L S, Wang P, Sin W J, Li T, and Wei J, Rapid Prototyp J (2018).

  146. Wang C, Tan X, Liu E, and Tor S B, Mater Des 147 (2018) 157.

    CAS  Google Scholar 

  147. Zhang M, Sun C-N, Zhang X, et al., Mater Sci Eng A 703 (2017) 251.

    CAS  Google Scholar 

  148. Smith C J, Derguti F, Hernandez Nava E, et al., J Mater Process Technol 229 (2016) 128.

    CAS  Google Scholar 

  149. Rännar L E, Koptyug A, Olsén J, Saeidi K, and Shen Z, Addit Manuf 17 (2017) 106.

    Google Scholar 

  150. Hinojos A, Mireles J, Reichardt A, et al., Mater Des 94 (2016) 17.

    CAS  Google Scholar 

  151. Popov V V, Katz-Demyanetz A, Garkun A, and Bamberger M, Addit Manuf 22 (2018) 834.

    CAS  Google Scholar 

  152. Pasang T, Kirchner A, Jehring U, et al., Met Mater Int 25 (2019) 1278.

    CAS  Google Scholar 

  153. Segura I A, Mireles J, Bermudez D, et al., J Nucl Mater 507 (2018) 164.

    CAS  Google Scholar 

  154. Doyle M, Agarwal K, Sealy W, and Schull K, Procedia Manuf 1 (2015) 251.

    Google Scholar 

  155. Liverani E, Toschi S, Ceschini L, and Fortunato A, J Mater Process Technol 249 (2017) 255.

    CAS  Google Scholar 

  156. Tarasov S Y, Filippov A V, Shamarin N N, Fortuna S V, Maier G G, and Kolubaev E A, J Alloys Compd 803 (2019) 364.

    CAS  Google Scholar 

  157. Joseph B, Katherasan D, Sathiya P, and Murthy C, Int J Eng Sci Technol 4 (2012) 169.

    Google Scholar 

  158. Ananth M G, Sathish Babu B, Chakravarthy P, et al., Int J Res Mech Eng Technol 3 (2013) 2249.

    Google Scholar 

  159. Raasch G D, and Munir Z A, J Mater Sci 13 (1978) 1061.

    CAS  Google Scholar 

  160. Hemmer H, Grong, and Klokkehaug S, Metall Mater Trans A Phys Metall Mater Sci 31 (2000) 1035.

    Google Scholar 

  161. Afkhami S, Dabiri M, Alavi S H, Björk T, and Salminen A, Int J Fatigue 122 (2019) 72.

    CAS  Google Scholar 

  162. Song S, Gao Z, Lu B, Bao C, Zheng B, and Wang L, Ceram Int 46 (2020) 568.

    CAS  Google Scholar 

  163. Singamneni S, Velu R, Behera M P, et al., Mater Des 183 (2019) 108087.

    CAS  Google Scholar 

  164. Hong R, Zhao Z, Leng J, Wu J, and Zhang J, Compos Part B Eng 176 (2019) 107214.

    CAS  Google Scholar 

  165. Piticescu R, Vlaicu I, Katz-Demyanetz A, et al., Manuf Rev 6 (2019).

  166. Järvinen J P, Matilainen V, Li X, et al., Phys Procedia 56 (2014) 72.

    Google Scholar 

  167. Matilainen V P, Piili H, Salminen A, and Nyrhilä O, Phys Procedia 78 (2015) 377.

    CAS  Google Scholar 

  168. Sun Y, Hebert R J, and Aindow M, Mater Des 140 (2018) 153.

    CAS  Google Scholar 

  169. Vyas C, Poologasundarampillai G, Hoyland J, and Bartolo P, Biomed. Compos (2017).

  170. Sarkar S, Kumar C S, and Nath A K, J Manuf Sci Eng 139 (2017).

  171. Uzan N E, Shneck R, Yeheskel O, and Frage N, Mater Sci Eng A 704 (2017) 229.

    CAS  Google Scholar 

  172. Islam M, Purtonen T, Piili H, Salminen A, and Nyrhilä O, Phys Procedia 41 (2013) 835.

    CAS  Google Scholar 

  173. Mower T M, and Long M J, Mater Sci Eng A 651 (2016) 198.

    CAS  Google Scholar 

  174. Niendorf T, Leuders S, Riemer A, Richard HA, Tröster T, and Schwarze D, Metall Mater Trans B Process Metall Mater Process Sci 44 (2013) 794.

    CAS  Google Scholar 

  175. Piili H, Happonen A, Väistö T, Venkataramanan V, Partanen J, and Salminen A, Phys Procedia 78 (2015) 388.

    CAS  Google Scholar 

  176. Verlee B, Dormal T, and Lecomte-Beckers J, Powder Metall 55 (2012) 260.

    CAS  Google Scholar 

  177. Wu A S, Brown D W, Kumar M, Gallegos G F, and King W E, Metall Mater Trans A Phys Metall Mater Sci 45 (2014) 6260.

    CAS  Google Scholar 

  178. Barile C, Casavola C, Campanelli S L, and Renna G, Eng Fail Anal 95 (2019) 273.

    CAS  Google Scholar 

  179. Sugavaneswaran M, Jebaraj A V, Kumar M D B, Lokesh K, and Rajan A J, Surfaces and Interfaces 12 (2018) 31.

    CAS  Google Scholar 

  180. Khodabakhshi F, Farshidianfar M H, Gerlich A P, Nosko M, Trembošová V, and Khajepour A, Addit Manuf 31 (2020).

  181. Reichardt A, Dillon R P, Borgonia J P, et al., Mater Des 104 (2016) 404.

    CAS  Google Scholar 

  182. Wang Z, Palmer T A, and Beese A M, Acta Mater 110 (2016) 226.

    CAS  Google Scholar 

  183. Asgari H, and Mohammadi M, Mater Sci Eng A 709 (2018) 82.

    CAS  Google Scholar 

  184. Bayode A, Akinlabi E T, and Pityana S, Lect Notes Eng Comput Sci 2226 (2016) 812.

    Google Scholar 

  185. Cheruvathur S, Lass E A, and Campbell C E, Jom 68 (2016) 930.

    CAS  Google Scholar 

  186. KC S, Nezhadfar PD, Phillips C, Kennedy M S, Shamsaei N, and Jackson R L, Wear 440441 (2019) 203100.

    Google Scholar 

  187. Ponnusamy P, Masood S H, Ruan D, Palanisamy S, Rahman Rashid R A, and Mohamed O A, Solid Free Fabr 2017 Proc 28th Annu Int Solid Free Fabr Symp - An Addit Manuf Conf SFF (2020) 321.

  188. Mahesha N S, Hanumantharaya R, Mahesh B, et al., Am J Mater Sci 6 (2016) 6.

    Google Scholar 

  189. Murayama M, Katayama Y, and Hono K, Metall Mater Trans A Phys Metall Mater Sci 30 (1999) 345.

    Google Scholar 

  190. Pasebani S, Ghayoor M, Badwe S, Irrinki H, and Atre S V., Addit Manuf 22 (2018) 127.

    CAS  Google Scholar 

  191. Ponnusamy P, Masood S H, Palanisamy S, Rahman Rashid R A, and Ruan D, Mater Today Proc 4 (2017) 8498.

    CAS  Google Scholar 

  192. Rashid R, Masood S H, Ruan D, Palanisamy S, Rahman Rashid R A, and Brandt M, J Mater Process Technol 249 (2017) 502.

    CAS  Google Scholar 

  193. Schaller R F, Taylor J M, Rodelas J, Mishra A, and Schindelholz E J, Mater Sci Technol Conf Exhib 2 (2017) 1083.

    Google Scholar 

  194. Stashkov A, Schapova E, Tsar’kova T, et al., J Phys Conf Ser 1389 (2019).

  195. Kudzal A, McWilliams B, Hofmeister C, et al., Mater Des 133 (2017) 205.

    CAS  Google Scholar 

  196. Gratton A, Proc Natl Conf Undergrad Res (2012) 423.

  197. AlMangour B, and Yang J M, Mater Des 110 (2016) 914.

    CAS  Google Scholar 

  198. Hu Z, Zhu H, Zhang H, and Zeng X, Opt Laser Technol 87 (2017) 17.

    CAS  Google Scholar 

  199. Irrinki H, Harper T, and Badwe S, et al., Prog Addit Manuf 3 (2018) 39.

    Google Scholar 

  200. Luecke W E, and Slotwinski J A, J Res Natl Inst Stand Technol 119 (2014) 398.

    Google Scholar 

  201. Murr L E, Martinez E, Hernandez J, et al., J Mater Res Technol 1 (2012) 167.

    CAS  Google Scholar 

  202. Stoudt M R, Ricker R E, Lass E A, and Levine L E, Jom 69 (2017) 506.

    CAS  Google Scholar 

  203. Nezhadfar P D, Burford E, and Anderson-Wedge K, et al., Int J Fatigue 123 (2019) 168.

    CAS  Google Scholar 

  204. Adeyemi A A, Akinlabi E, Mahamood R M, Sanusi K O, Pityana S, and Tlotleng M, IOP Conf Ser Mater Sci Eng 225 (2017) 012028.

    Google Scholar 

  205. Wu Y, Guo Q, Lv W, and Huang F, J Mater Eng Perform 29 (2020) 135.

    CAS  Google Scholar 

  206. Li P, Cai Q Z, Wei B K, and Zhang X Z, J Iron Steel Res Int 13 (2006) 73.

    CAS  Google Scholar 

Download references

Acknowledgements

We hereby acknowledge and sincere appreciation to Kalasalingam Academy of Research and Education, Krishnankoil 626 126, Tamil Nadu, India.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

JRJM collected primary data, contributed to draft, checked the draft, and prepared the overall manuscript and finalized the contents. RN supervised and contributed to writing. SK investigated on results and contributed to writing. SS edited the manuscript and arranged resources. SOI reviewed the manuscript and did the overall editing, investigated on results, and the validated data. TRP contributed to writing.

Corresponding author

Correspondence to Rajini Nagarajan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michla, J.R.J., Nagarajan, R., Krishnasamy, S. et al. Conventional and Additively Manufactured Stainless Steels: A Review. Trans Indian Inst Met 74, 1261–1278 (2021). https://doi.org/10.1007/s12666-021-02305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02305-7

Keywords

Navigation