Skip to main content

Studies on Parametric Optimization of HVOF-Sprayed Cr2O3 Coatings on Al6061 Alloy

Abstract

High-velocity oxy-fuel (HVOF) is a widely used thermal spray technique to obtain high density, high bond strength, and improved hardness coatings. In the present work, optimization of HVOF process parameters was carried out using the Taguchi method to minimize porosity and improve microhardness, and bond strength of Cr2O3 coatings. Based on the signal-to-noise ratio and analysis of variance, the significance of each process parameter and optimum parameter combination is obtained. Based on the signal-to-noise ratio, the most significant process parameter affecting porosity and microhardness was standoff distance, while for bond strength, it was powder feed rate. An optimal combination of process parameters for porosity, microhardness, and bond strength was obtained from S/N ratio analysis. For porosity, optimal parameters were standoff distance of 100 rpm, powder feed rate of 30 g/min, and gun speed of 250 mm/s. The optimal process parameters for microhardness were standoff distance of 300 rpm, powder feed rate of 50 g/min, and gun speed of 200 mm/s. Finally, for bond strength, the optimal process parameters were standoff distance of 300 rpm, powder feed rate of 50 g/min, and gun speed of 250 mm/s. Statistical results for porosity, microhardness, and bond strength showed that the difference between the predicted R2 and adjusted R2 values were relatively minimal and close to the one highlighting the fitness of the regression model employed for analysis. Fracture analysis after bond strength test showed combined adhesion/cohesion type failure for the Cr2O3 coatings.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Mohan S, and Mohan A, in Anti-Abrasive Nanocoatings: Current and Future Applications, Woodhead Publishing, (2015), p 3.

  2. Hardwicke C U, and Lau Y, J Therm Spray Technol 22 (2013) 564.

    Article  Google Scholar 

  3. Naveena B E, Keshavamurthy R, and Sekhar N, Int J Comput Mater Sci Surf Eng 8 (2019) 57.

    Google Scholar 

  4. Keshavamurthy R, Naveena B E, Ahamed A, Sekhar N, and Peer D, Mater Res Express 6 (2019) 0865i4.

  5. Naveena B E, Keshavamurthy R, and Channabasappa B H, Appl Mech Mater 813 (2015) 511.

    Article  Google Scholar 

  6. Sidhu T S, Prakash S, and Agarwal R D, Mar Technol Soc J 39 (2005) 53.

    Article  Google Scholar 

  7. Keshavamurthy R, Sudhan J M, Kumar A, Ranjan V, Singh P, and Singh A, Mater Today: Proc 5 (2018) 24587.

    CAS  Google Scholar 

  8. Kumar G S P, Keshavamurthy R, Akhil M P, Kiran K, Thomas M J, and Hebbar GS, Int J Mater Eng Innov 12 (1), 1–17.

  9. Tian Y, Zhang H, Chen X, MacDonald A, Wu S, Xiao T, and Li H, Surf Coat Technol 397 (2020) 126012.

  10. Reddy N C, Kumar B S A, Ramesh M R, and Koppad P G, Phys Met Metallogr 119 (2018) 462.

    CAS  Article  Google Scholar 

  11. Lobel M, Lindner T, and Lampke T, Surf Coat Technol 403 (2020) 126379.

  12. Nagabhushana N, Rajanna S, Mathapati M, Ramesh M R, Koppad P G, and Reddy N C, Mater Res Express 6 (2019) 086451.

  13. Milanti A, Matikainen V, Bolelli G, Koivuluoto H, Lusvarghi L, and Vuoristo P, J Therm Spray Technol 25 (2016) 1040.

    CAS  Article  Google Scholar 

  14. Shivalingaiah K, Sridhar K S, Sethuram D, Murthy K V S, Koppad P G, and Ramesh C S, Mater Res Express 6 (2019) 1265i8.

  15. Bolelli G, Lusvarghi L, Manfredini T, Pighetti Mantini F, Polini R, Turunen E, Varis T, and Hannula S-P, Int J Surf Sci Eng 1 (2007) 38.

    CAS  Article  Google Scholar 

  16. Singh H, Grewal M S, Sekhon H S, and Rao R G, Proc Inst Mech Eng Part J J Eng Tribol 222 (2008) 601.

    CAS  Article  Google Scholar 

  17. Pang X, Gao K, Volinsky A A, J Mater Res 22 (2007) 3531.

    CAS  Article  Google Scholar 

  18. Dong S, Song B, Hansz B, Liao H, and Coddet C, Surf Coat Technol 225 (2013) 58.

    CAS  Article  Google Scholar 

  19. Fernandez J E, Wang Y, Tucho R, Martin-Luengo M A, Gancedo R, and Rincon A, Tribol Int 29 (1996) 333.

    CAS  Article  Google Scholar 

  20. Zamani P, and Valefi Z, Surf Coat Technol 316 (2017) 138.

    CAS  Article  Google Scholar 

  21. Conze S, Grimm M, Berger L-M, Thiele S, Drehmann R, and Lampke T, Surf Coat Technol 405 (2021) 126702.

  22. Reddy N C, Kumar B S A, Reddappa H N, Ramesh M R, Koppad P G, and Kord S, J Alloys Compd 736 (2018) 236.

    CAS  Article  Google Scholar 

  23. Goyal K, Tribol Mater Surf Interfaces 12 (2018) 97.

    CAS  Article  Google Scholar 

  24. Reddy N C, Koppad P G, Reddappa H N, Ramesh M R, Babu E R, and Varol T, Surf Topogr: Metrol Prop 7 (2019) 025019.

  25. Goyal K, Singh H, and Bhati R, Surf Eng 36 (2020) 124.

    CAS  Article  Google Scholar 

  26. Cho J Y, Zhang S H, Cho T Y, Yoon J H, Joo Y K, and Hur S K, J Mater Sci 44 (2009) 6348.

    CAS  Article  Google Scholar 

  27. Tillmann W, Vogli E, Baumann I, Kopp G, and Weihs C, J Therm Spray Technol 19 (2010) 392.

    CAS  Article  Google Scholar 

  28. Kawakita J, Kuroda S, and Kodama T, Surf Coat Technol 166 (2003) 17.

    CAS  Article  Google Scholar 

  29. Puneeth N, Satheesh J, Koti V, Koppad P G, Akbarpour M R, and Naveen G J, Mater Res Express 6 (2019) 1065a1.

  30. Ozel S, Vural E, and Binici M, Fuel 263 (2020) 116537.

  31. Qin Y, Wu Y, Zhang J, Hong S, Guo W, Chen L, and Liu H, J Mater Eng Perform 24 (2015) 2637.

    CAS  Article  Google Scholar 

  32. Gan J A, and Berndt C C, Surf Coat Technol 216 (2013) 127.

    CAS  Article  Google Scholar 

  33. Tillmann W, Baumann I, Hollingsworth P, and Laemmerhirt I-A, J Therm Spray Technol 272 (2013) 272.

    Article  Google Scholar 

  34. Bussmann M, Chandra S, and Mostaghimi J, Numerical Results of Off-Angle Thermal Spray Particle Impact, Thermal Spray 1999: United Thermal Spray Conference, E. Lugscheider, P.A. Kammer, Ed., Materials Park, Ohio and Dusseldorf, Germany, ASM International and DVS (1999) p 783.

  35. Vignesh S, Shanmugam K, Balasubramanian V, and Sridhar K, Defence Technol 13 (2017) 101.

    Article  Google Scholar 

  36. Praveen A S, Sarangan J, Suresh S, and Channabasappa B H, Ceram Int 42 (2016) 1094.

    CAS  Article  Google Scholar 

  37. Ramachandran C S, Balasubramanian V, and Ananthapadmanabhan P V, J Therm Spray Technol 20 (2011) 590.

    CAS  Article  Google Scholar 

  38. Rajesh R, and Sumathi S, Energy Rep 6 (2020) 1638.

    Article  Google Scholar 

  39. Brossard S, Munroe P R, Tran A T T, and Hyland M M, J Therm Spray Technol 19 (2010) 1131.

    CAS  Article  Google Scholar 

  40. Matejicek J, Vilemova M, Musalek R, Sachr P, and Hornik J, Coatings 3 (2013) 108.

    CAS  Article  Google Scholar 

  41. Pulido-Gonzalez N, Garcia-Rodriguez S, Campo M, Rams J, and Torres B, J Therm Spray Technol 29 (2020) 384.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge their sincere thanks to the management of CHRIST (Deemed to be University), Bangalore, India, for sponsoring this research work under Minor Research Project (Project No: MRP MNG-19). The authors would like to express their deep sense of gratitude to Dr.Iven Jose, Dean, School of Engineering and Technology, CHRIST (Deemed to be University), Bengaluru, India. The authors wish to thank Dr.R.Keshavamurthy, Professor, Department of Mechanical Engineering, Dayananda Sagar College of Engineering, Bangalore, INDIA, for his technical discussion and suggestions on preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Pradeep Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pradeep Kumar, G.S., Harish Kumar, M., Thomas, S. et al. Studies on Parametric Optimization of HVOF-Sprayed Cr2O3 Coatings on Al6061 Alloy. Trans Indian Inst Met 74, 2013–2025 (2021). https://doi.org/10.1007/s12666-021-02295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02295-6

Keywords

  • Chromium oxide coating
  • Taguchi method
  • Porosity
  • Microhardness
  • Adhesion