Skip to main content

Effects of Cryogenic Aging on Flexural Behavior of Advanced Inter-ply Hybrid Fiber-Reinforced Polymer Composites


Advanced fiber-reinforced polymer composites are stronger, durable and lighter than their metallic counterparts. Inter-ply hybrid polymer composites are formed by more than one type of fiber plies reinforced in the same matrix. The durability and integrity of the altered stacking sequence and hybrid ratio of such composites at low temperature conditions have not been widely explored. In this research work, flexural behavior of cryogenic conditioned glass and/or carbon fibers-based hybrid composites has been studied. Substituting two glass fiber plies with those of carbon on the top side of glass/epoxy (GE) composite, denoted as (C2G3), achieved the maximum flexural strength of 491.94 MPa (27.82% higher than unconditioned neat GE composite) after 8 h of conditioning, and the highest flexural modulus of 33.52 GPa was attained by C1G3C1 composite. A detailed analysis of the effect of conditioning duration and stacking sequence of the hybrids on the flexural properties was done and the underlying mechanisms were discussed. Post-failure analysis of composites using a scanning electron microscope was done to understand the fractographic behavior of the samples. Finally, elemental analysis was used to measure nitrogen incorporation within the matrix as a function of conditioning duration.

This is a preview of subscription content, access via your institution.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. [1]

    Houts M G, Kim T, Emrich W J, Hickman R R, Broadway J W, Gerrish H P, Doughty G, Belvin A, Borowski S K, and Scott, J, 50th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. 2014 (2014) p 1–9.

  2. [2]

    Z. Bennaceur, D. Ouinas, H.C. Mechanical behaviour of steel pipes reinforced with composite materials and steel. J. Mater. Environ. Sci. 2017, 1536–2543.

    Google Scholar 

  3. [3]

    Choi S, and Sankar B V, Compos Part B Eng 38 (2007) 193.

    Article  CAS  Google Scholar 

  4. [4]

    Soni B, and Biswas S, Trans Indian Inst Met 2017 (1921) 70.

    Google Scholar 

  5. [5]

    HAL delivers biggest cryogenic propellant tank to Isro—India News Available online: (accessed on Mar 10, 2021).

  6. [6]

    Wu Z X, Zhang H, Yang H H, Chu X X, and Li LF, J Nucl Mater 403 (2010) 117.

    CAS  Article  Google Scholar 

  7. [7]

    Bhadaja DJ, and Sheth P PC, A Technical Review on Deep Cryogenic Treatment on FRP Composite Materials & Experimental Analysis of its Effect, Vol. 3 (2015).

    CAS  Google Scholar 

  8. [8]

    Bechel V T, Fredin M B, Donaldson S L, Kim R Y, and Camping J D, Compos Part A Appl Sci Manuf 34 (2003) 663.

    Article  CAS  Google Scholar 

  9. [9]

    Bechel V T, and Kim R Y, Compos Sci Technol 64 (2004) 1773.

    CAS  Article  Google Scholar 

  10. [10]

    Bechel V T, Negilski M, abnd James J, Compos Sci Technol 66 (2006) 2284.

    CAS  Article  Google Scholar 

  11. [11]

    Yokozeki T, Aoki T, and Ishikawa T, J Spacecr Rockets 42 (2005) 363.

    Article  Google Scholar 

  12. [12]

    Rivers H K, Sikora J G, and Sankaran S N, J Spacecr Rockets 39 (2002) 452.

    CAS  Article  Google Scholar 

  13. [13]

    Gong M, Wang X F, and Zhao J H, Cryogenics (Guildf) 47 (2007) 1.

    CAS  Article  Google Scholar 

  14. [14]

    Disdier S, Rey J M, Pailler P, and Bunsell A R, Cryogenics (Guildf) 38 (1998) 135.

    CAS  Article  Google Scholar 

  15. [15]

    Aceves S M, Martinez-Frias J, and Garcia-Villazana O, Int J Hydrogen Energy 25 (2000) 1075.

    CAS  Article  Google Scholar 

  16. [16]

    Shindo Y, Wang R, and Horiguchi K, J Eng Mater Technol ASME—J Eng Mater Technol 123 (2001) 118.

    Google Scholar 

  17. [17]

    Surendra Kumar M, Sharma N, and Ray B C, J Reinf Plast Compos 2009 (2013) 28.

    Google Scholar 

  18. [18]

    Rai R K, Sahu J K, Das S K, Paulose N, Fernando D C, and Srivastava C, Mater Charact 141 (2018) 120.

    CAS  Article  Google Scholar 

  19. [19]

    Rai R K, and Sahu J K, Mater Lett 220 (2018) 90.

    CAS  Article  Google Scholar 

  20. [20]

    Prusty R K, Rathore D K, Singh B P, Mohanty S C, Mahato K K, and Ray B C, Constr Build Mater 118 (2016) 327.

    CAS  Article  Google Scholar 

  21. [21]

    Yandrapu S, Gangineni P K, Ramamoorthy S K, Ray B C, and Prusty R K, J Appl Polym Sci 137 (2020) 48925.

    CAS  Article  Google Scholar 

  22. [22]

    Lopes Gomes Hastenreiter L, Ramamoorthy S K, Srivastava R K, Yadav A, Zamani A, and Åkesson D, Polymers (Basel) 12 (2020) 2849.

    Article  CAS  Google Scholar 

  23. [23]

    Baghaei B, Skrifvars M, Rissanen M, and Ramamoorthy SK, J Appl Polym Sci 131 (2014).

    Article  CAS  Google Scholar 

  24. [24]

    Wu Z S, Yang C Q, Tobe Y H, Ye L P, and Harada T, J Compos Mater 40 (2006) 227.

    Article  Google Scholar 

  25. [25]

    Czél G, and Wisnom M R, Compos Part A Appl Sci Manuf 52 (2013) 23.

    Article  CAS  Google Scholar 

  26. [26]

    Dasari S, Saurabh S, and Prusty R K, J Appl Polym Sci 138 (2020) 49928.

    Article  CAS  Google Scholar 

  27. [27]

    Swolfs Y, Gorbatikh L, and Verpoest I, Compos Part A Appl Sci Manuf 67 (2014) 181.

    CAS  Article  Google Scholar 

  28. [28]

    Swolfs Y, Verpoest I, and Gorbatikh L, Int Mater Rev 64 (2019) 181.

    CAS  Article  Google Scholar 

  29. [29]

    Belgacem L, Ouinas D, Viña Olay J A, and Amado A A, Compos Part B Eng 145 (2018) 189.

    CAS  Article  Google Scholar 

  30. [30]

    Hamani N, Ouinas D, Taghezout N, Sahnoun M, and Viña J, in Proceedings of the Advanced Materials Research, Trans Tech Publications Ltd, Vol. 629 (2013) p 95.

    Google Scholar 

  31. [31]

    Song J H, Compos Part B Eng 79 (2015) 61.

    CAS  Article  Google Scholar 

  32. [32]

    Wisnom M R, Czél G, Swolfs Y, Jalalvand M, Gorbatikh L, and Verpoest I, Compos Part A Appl Sci Manuf 88 (2016)131.

    CAS  Article  Google Scholar 

  33. [33]

    Motoc D L, Ivens J, and Dadirlat N, J Therm Anal Calorim 112 (2013) 1245.

    CAS  Article  Google Scholar 

  34. [34]

    Avila R O, Islam M S, and Prabhakar P, Thermal Gradient on Hybrid Composite Propellant Tank Materials at Cryogenic Temperatures, ASME International (2016).

    Google Scholar 

  35. [35]

    Kumar D S, Shukla M J, Mahato K K, Rathore D K, Prusty R K, and Ray B C, IOP Conf Ser Mater Sci Eng 75 (2015).

    Google Scholar 

  36. [36]

    Hartwig G, and Knaak S, Cryogenics (Guildf) 24 (1984) 639.

    CAS  Article  Google Scholar 

  37. [37]

    Kim J K, and Mai Y W. Engineered Interfaces in Fiber Reinforced Composites, Elsevier (1998).

  38. [38]

    Rathore D K, Prusty R K, Mohanty S C, Singh B P, and Ray B C, Mech Mater 105 (2017) 99.

    Article  Google Scholar 

  39. [39]

    Shukla M J, Kumar D S, Rathore D K, Prusty R K, and Ray B C, J Compos Mater 50 (2016) 3077.

    CAS  Article  Google Scholar 

  40. [40]

    Huang C J, Fu S Y, Zhang Y H, Lauke B, Li L F, and Ye L, Cryogenics (Guildf) 45 (2005) 450.

    CAS  Article  Google Scholar 

  41. [41].

    Dasari S, Saurabh S, Gupta S, Ray B C, and Prusty R K, in Proceedings of the Materials Today: Proceedings, Vol. 27 (2020).

    Google Scholar 

  42. [42]

    Chu X X, Wu Z X, Huang R J, Zhou Y, and Li L F, Cryogenics (Guildf) 50 (2010) 84.

    CAS  Article  Google Scholar 

  43. [43]

    Hiltner A, and Baer E, Polymer (Guildf) 15 (1974) 805.

    CAS  Article  Google Scholar 

  44. [44]

    Sápi Z, and Butler R, Cryogenics (Guildf) 111 (2020) 103.

    Google Scholar 

  45. [45]

    Kwon D J, Wang Z J, Choi J Y, Shin P S, Devries K L, and Park J M, Compos Part A Appl Sci Manuf 72 (2015) 160.

    CAS  Article  Google Scholar 

  46. [46]

    Kalia S, and Fu S Y, Polymers at Cryogenic Temperatures, Vol. 9783642353; ISBN 9783642353352 (2013).

    Book  Google Scholar 

  47. [47]

    Hartwig G, in Advances in Cryogenic Engineering Materials, Springer US (1982) p 179.

    Chapter  Google Scholar 

  48. [48]

    Greenhalgh E S, Failure Analysis and Fractography of Polymer Composites, ISBN 9781845692179 (2009).

Download references


The authors are profoundly grateful to National Institute of Technology Rourkela and Science and Engineering Research Board (DST) (ECR/2018/001241) for allocating financial support for doing this research work. The technical aid form Mr. Rajesh Patnaik is eminently admired.

Author information



Corresponding author

Correspondence to Rajesh Kumar Prusty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dasari, S., Lohani, S., Gangineni, P.K. et al. Effects of Cryogenic Aging on Flexural Behavior of Advanced Inter-ply Hybrid Fiber-Reinforced Polymer Composites. Trans Indian Inst Met 74, 2171–2183 (2021).

Download citation


  • Flexural behavior
  • Liquid nitrogen conditioning
  • Hybrid composite
  • Hybrid effect
  • Fractography