Skip to main content
Log in

Effect of Mixing Pre-heated Water on Granulation and Iron Ore Sinter Properties

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Granulation of sinter feed mix is one of the most important factors in determining the permeability of sinter bed and sinter properties like sinter yield, tumbler index, etc. To improve the granulation of sinter feed mix, various technologies like two-stage granulation process, coating granulation process, wet vertical ball mill and use of magnetic water have been reported. In this paper, effect of pre-heated water (30, 60 and 90 °C) on granulation fitness of sinter feed mix was studied using a laboratory mixing drum. Sinter properties were investigated using pot sinter experiments. It was observed that with addition of pre-heated water, granulation fitness i.e., Balling index (BI) and Granulation index (GI) has increased, indicating that wetting of sinter feed mix has improved significantly. Treatment of sinter feed mix with pre-heated water reduces the surface tension of water and improves slaking of lime. This enables improved binding of the small size faction (− 0.25 mm), leading to stronger green ball which results in reduced fine generation during charging to the sinter bed. This further leads to the improvement in bed permeability and sinter properties. Enhanced hydration of lime and improved dispersion of water thus achieved have benefitted granulation fitness (GI increases by 5.3% and BI increases by 9.7%). Sinter yield increases by 2.1% and tumbler index by 1.6%. The results suggest that the proposed methodology is effective in improving the granulation fitness of sinter feed mix and sinter properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kang H, Choi S, Yang W, and Cho B, ISIJ Int 51 (2011) 1065.

    Article  CAS  Google Scholar 

  2. Kurkin V M, Tabakov M S, Kashkarov E A, Gurkin M A, Detkova T V, and Reshetkin S V, Metallurgist 51 (2007) 420.

    Article  CAS  Google Scholar 

  3. Roller R W, BHP Tech Bull 26 (1982) 44.

  4. Furui T, Sugawara K, Kagawa M, Uno S, Kawazu M, Fujiwara T, and Sawamura A, Nippon Steel Tech Rep Overseas 10 (1977) 36.

    Google Scholar 

  5. Ellis B G, Loo C E, and Witchard D, Ironmak Steelmak 3 (2007) 99.

    Article  Google Scholar 

  6. Hida Y, Ito K, Okazaki J, Sasaki M, and Umezu Y, Tetsu-to-Hagané 68 (1982) 2166.

    Article  CAS  Google Scholar 

  7. Khosa J, and Manuel J R, ISIJ Int 47 (2007) 965.

    Article  CAS  Google Scholar 

  8. Litster J D, and Waters A G, Powder Technol 55 (1988) 141.

    Article  CAS  Google Scholar 

  9. Lv X W, Huang X B, Yin J Q, and Bai C G, ISIJ Int 51 (2011) 1432.

    Article  CAS  Google Scholar 

  10. Lv X W, Bai C G, Qiu G B, and Hu M L, Powder Technol 204 (2010) 138.

    Article  CAS  Google Scholar 

  11. Huang X B, Lv X W, and Xue Z L, ISIJ Int 56 (2016) 1964.

    Article  CAS  Google Scholar 

  12. Oboso A, Shouho T, Tajiri K, One K, and Matsumura M, in 2nd International Congress on the Science and Technology of Ironmaking and 57th Ironmaking Conference Proceedings 57 (1998), p 1327.

  13. Nandy B, and Gupta S S, in ISS Ironmaking Conference Proceedings 59 (2000) p 241

  14. Haga T, Oshio A, Shibata D, Kasama S, Kozono T, and Hida Y, in Proceedings of 4th European Coke Making and IRONMAKING Congress, Paris, France 1 (2000) p 118.

  15. Shibata D, Haga T, Oshio A, Kasama S, Yamamura Y, and Watanabe K, CAMP-ISIJ 10 (1997) 804.

    Google Scholar 

  16. Oyama N, Sato H, Takeda K, Ariyama T, Masumoto S, Jinno T, and Fujii N, ISIJ Int 45 (2005) 817.

    Article  CAS  Google Scholar 

  17. Yamaguchi Y, Hara M, Umemoto H, Morita Y, Teraji S, and Matsumura M, Nippon Steel Technical Report No. 123 (2020) p 33.

  18. Dhara S, Roy M, Singh M K, Acharya S, Chowdhury G M, and Pan S K, Steel Times Int (2018) 1.

  19. Rajak D K, Ballal N B, Viswanathan N N, and Singhai M, ISIJ Int 61 (2021) 79.

    Article  CAS  Google Scholar 

  20. Choudhary M K, and Nandy B, ISIJ Int 46 (2006) 611.

    Article  CAS  Google Scholar 

  21. Matsumura M, Yamaguchi Y, Hara M, Kamijo C, Kawaguchi T, and Nakagawa Y, ISIJ Int 53 (2013) 34.

    Article  CAS  Google Scholar 

  22. Takayama T, Murao R, and Kimura M, ISIJ Int 58 (2018) 1069.

    Article  CAS  Google Scholar 

  23. Prasad S, Sinter Technology Theory and Practice, Damini Printers, Bokaro (2014) p 34.

    Google Scholar 

  24. Matsumura T, Maki T, Amano S, Sakamoto M, and Iwasaki N, ISIJ Int 49 (2009) 618.

    Article  CAS  Google Scholar 

  25. Carran D, Hughes J, Leslie A, and Kennedy C, Historic Mortars 7 (2012) 283.

    Article  Google Scholar 

  26. Sassa Y, Ishii H, and Nakajima M, Nisshin Steel Technical Report 31 (1993) 1.

  27. De-Qing Z, Ke-Cheng Z, Jian P, Xiao-Hui F, You-Ming H, and Clout J, J CSUT 10 (2003) 177.

    Google Scholar 

  28. ASTM C110 Standard Test Methods for Physical Testing of Quicklime, Hydrated Lime and Limestone.

  29. Mumme W G, Clout J M F, and Gable R W, Neues Jahrb Miner Abh 173 (1998) 93.

    Article  CAS  Google Scholar 

  30. Garbers-Craig A M, Geldenhuis J M A, Jordaan W J, and Pistorius P C, J South Afr Inst Min Metall 103 (2003) 645.

    CAS  Google Scholar 

  31. Webster N A S, Pownceby M I, Madsen I C, and Kimpton J A, ISIJ Int 53 (2013) 774.

    Article  CAS  Google Scholar 

  32. Hassibi Md, Chemco systems, L.P (2015) 1.

  33. Shigaki I, Sawada M, Yoshioka K, and Takahashi T, Tetsu-to-Hagané 71 (1985) 1880.

    Article  CAS  Google Scholar 

  34. Shigaki I, Sawada M, and Gennai N, Trans Iron Steel Inst Jpn 26 (1986) 503.

    Article  CAS  Google Scholar 

  35. Loo C E, Wan K T, and Howes V R, Ironmak Steelmak 15 (1988) 279.

    Google Scholar 

  36. Bristow N J, and Waters A G, Trans Inst Min Metall C 100 (1991) 1.

    CAS  Google Scholar 

  37. Chatterjee A, De A, and Gupta S S, Tata Search 26 (1993) 66.

    Google Scholar 

  38. Formoso A, Moro A, Pello G F, Menendez J, Muniz M, and Cores A, Ironmak Steelmak 30 (2003) 447.

    Article  CAS  Google Scholar 

  39. Hyper physics, Georgia State University, http://hyperphysics.phyastr.gsu.edu/hbase/surten.html, (accessed 26-03-2020)

  40. Puzanov V P, and Kobelev V A, Introduction to the Engineering of Metallurgical Structure Formation (2005).

  41. Chernyshov E, Potamoshneva N, and Kukina O, Stroit Mater Obourd Tekhnol XXI 5 (2002) 8.

  42. Oates J A H, Lime and Limestone, Chemistry and Technology, Production and Uses, Wiley-VCH, Weinheim (1998).

    Book  Google Scholar 

  43. Manoj Kumar C, and Nandy B, Tata Search (2006)

Download references

Acknowledgements

The authors are grateful to the management of JSW Steel, Dolvi for the encouragement and support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Kumar Rajak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajak, D.K., Singhai, M., Sahu, R. et al. Effect of Mixing Pre-heated Water on Granulation and Iron Ore Sinter Properties. Trans Indian Inst Met 74, 1611–1622 (2021). https://doi.org/10.1007/s12666-021-02251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02251-4

Keywords

Navigation