Skip to main content
Log in

Microstructure and Mechanical Properties of the AA7075T7352 Aluminum Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Microstructure evolution and their effects on mechanical behaviors of the AA7075T7352 aluminum alloy are reported. Phase analysis was done by X-ray diffraction and transmission electron microscope. The presence of the GP-Zones, ɳ', and ɳ, along with Al2Cu, Al2CuMg, and Al3Zr, was noticed. Mechanical characterizations were done with the help of a tensile test and Vickers microhardness. Flow behaviors were studied to evaluate the impact of second-phase particles in the properties. Strain hardening exponents along with UTS/YS ratio have been calculated. Flow curve fitting follows Ludwigson relationship with two distinct slopes. Dislocation loops and forest dislocation were noticed in the low strain range, while dense dislocation walls in the high strain range. Variation in flow parameters is due to the random spread of precipitate particles in the matrix. The material fails by mixed mode of ductile and brittle fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Das P, Jayaganthan R, and Singh I V, Mater Des 32 (2011) 1298.

    Article  CAS  Google Scholar 

  2. Peng X, Guo Q, Liang X, Deng Y, Gu Y, Xu G, and Yin Z, Mater Sci Eng A 688 (2017) 146.

    Article  CAS  Google Scholar 

  3. Lin Y C, Jiang Y Q, Chen X M, Wen D X, and Zhou H M, Mater Sci Eng A 588 (2013) 347.

    Article  CAS  Google Scholar 

  4. Mahathaninwong N, Zhou Y, Babcock S E, Plookphol T, Wannasin J, and Wisutmethangoon S, Mater Sci Eng A 556 (2012) 107.

    Article  CAS  Google Scholar 

  5. Pandey V, Singh J K, Chattopadhyay K, Srinivas N C S, and Singh V, J Alloys Compd 723 (2017) 826.

    Article  CAS  Google Scholar 

  6. Starink, M J, and Li X M, Metal Trans 34 (2003) 899.

    Article  Google Scholar 

  7. Li J, Peng Z, Li C, Jia Z, Chen W, and Zheng Z, Trans Nonferrous Met Soc China (English Ed) 18 (2008) 755.

    Article  CAS  Google Scholar 

  8. Su J Q, Nelson T W, Mishra R, and Mahoney M, Acta Mater 51 (2003) 713.

    Article  CAS  Google Scholar 

  9. Lee C W U, Chung Y H, Cho K K, and Shin M C, In Mater Design (ed) 18 (1998) 327.

  10. Liu Y, Jiang D M, and Li W J, J Alloys Compd 671 (2016) 408.

    Article  CAS  Google Scholar 

  11. Ogura T, Hirosawa S, Hirose A, and Sato T, Metall Trans 52 (2011) 900.

    CAS  Google Scholar 

  12. Xu X, Zhao Y, Wang X, Zhang Y, and Ning Y, Mater Sci Eng A 648 (2015) 367.

    Article  CAS  Google Scholar 

  13. Pandey V, Rao G S, Chattopadhyay K, Srinivas N S, and Singh V, Mater Sci Eng A 647 (2015) 201.

    Article  CAS  Google Scholar 

  14. Shaeri M H, Salehi M T, Seyyedein S H, Abutalebi M R, and Park J K, Mater Des 57 (2014) 250.

    Article  CAS  Google Scholar 

  15. Gopala Krishna K, Sivaprasad K, Venkateswarlu K, and Hari Kumar K C, Mater Sci Eng A 535 (2012) 129.

    Article  CAS  Google Scholar 

  16. Viana F, Pinto A M, and Santos H M, J Mater Process Technol 92–93 (1999) 54.

    Article  Google Scholar 

  17. Ma K, Hu T, Yang H, Topping T, Yousefiani A, Lavernia E J, and Schoenung J M, Acta Mater 103 (2016) 153.

    Article  CAS  Google Scholar 

  18. Guo W, Guo J, Wang J, Yang M, Li H, Wen X, and Zhang J, Mater Sci Eng A 634 (2015) 167.

    Article  CAS  Google Scholar 

  19. Chung T F, Yang, Y L, Shiojiri M, Hsiao C N, Li W C, Tsao C S, Shi Z, Lin J, and Yang J R, Acta Mater 174 (2019) 351.

    Article  CAS  Google Scholar 

  20. Berg L K, Waterloo G, Schryvers D, and Wallenberg L R, Acta Mater 49 (2020) 3443.

    Article  Google Scholar 

  21. Ghosh A, Ghosh M, and Shankar G, Mater Sci Eng A 738 (2018) 399.

    Article  CAS  Google Scholar 

  22. Sha G, and Cerezo A, Acta Mater 52 (2004) 4503.

    Article  CAS  Google Scholar 

  23. Fang S F, Wang M P, and Song M, Mater Des 30 (2009) 2460.

    Article  CAS  Google Scholar 

  24. Mondal C, Singh A K, Mukhopadhyay A K, and Chattopadhyay K, Mater Sci Eng A 577 (2013) 87.

    Article  CAS  Google Scholar 

  25. Campbell C E, Bendersky L A, Boettinger W J, and Ivester R, Mater Sci Eng A 430 (2006) 15.

    Article  Google Scholar 

  26. Moghanaki S K, and Kazeminezhad M, J Alloys Compd 683 (2016) 527.

    Article  Google Scholar 

  27. Ludwigson D C, Metall Trans 2 (1971) 2825.

    Article  CAS  Google Scholar 

  28. Klug H P, and Alexander L E, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York (1954), p 491.

    Google Scholar 

  29. Williamson G K, and Smallman R E, Philos Mag, 1 (1956) 34.

    Article  CAS  Google Scholar 

  30. Smallman R E, and Westmacott K H, Philos Mag, 2 (1957) 669.

    Article  CAS  Google Scholar 

  31. Zhang K, Alexandrov I V, Kilmametovz A R, Valiev R Z, and Luy K, J Phys D, 30 (1997) 3008.

    Article  CAS  Google Scholar 

  32. Zhao Y L, Yang Z Q, Zhang Z, Su G Y, and Ma X L, Acta Mater 61 (2013) 1624.

    Article  CAS  Google Scholar 

  33. Rastegari H, Kermanpur A, and Najafizadeh A, Mater Sci Eng A 632 (2015) 103.

    Article  CAS  Google Scholar 

  34. Stiller K, Warren P J, Hansen V, Angenete J, and Gjønnes J, Mater Sci Eng A 270 (1999) 55.

    Article  Google Scholar 

  35. Godard D, Archambault P, Aeby-gautier E, and Lapasset G, Acta Mater 50 (2002) 2319.

    Article  CAS  Google Scholar 

  36. Ma K, Wen H, Hu T, Topping T D, Isheim D, Seidman D N, Lavernia E J, and Schoenung J M, Acta Mater 62 (2014) 141.

    Article  CAS  Google Scholar 

  37. Canadinc D, Sehitoglu H, and Maier H J, Mater Sci Eng A 455 (2007) 662.

    Article  Google Scholar 

  38. Mehta K K, Mukhopadhyay P, Mandal R K, and Singh A K, Mater Sci Eng A 613 (2014) 71.

    Article  CAS  Google Scholar 

  39. Kocks U F, J Eng Mater Technol Trans ASME 98 (1976) 76.

    Article  CAS  Google Scholar 

  40. Kocks U F, and Mecking H, Acta Mater 29 (1981) 1865.

    Article  Google Scholar 

  41. Estrin Y, and Mecking H, Acta Mater 32 (1984) 57.

    Article  Google Scholar 

  42. Godfrey A, and Hughes D A, Scr Mater 51 (2004) 831.

    Article  CAS  Google Scholar 

  43. Landau P, Makov G, Shneck R Z, and Venkert A, Acta Mater 59 (2011) 5342.

    Article  CAS  Google Scholar 

  44. Hu T, Ma K, Topping T D, Schoenung J M, and Lavernia E J, Acta Mater 61 (2013) 2163.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Manish Kumar Singh and Mr. Lalit Kumar Singh of the Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India, for their help in microscopy works. This research is funded by the Indian Institute of Technology (BHU), Varanasi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Manna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandon, R., Mehta, K.K., Manna, R. et al. Microstructure and Mechanical Properties of the AA7075T7352 Aluminum Alloy. Trans Indian Inst Met 74, 1509–1520 (2021). https://doi.org/10.1007/s12666-021-02222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02222-9

Keywords

Navigation