Skip to main content

Variability in Fatigue Life of Near-α Titanium Alloy IMI 834

Abstract

Most aero-engine components and structures are subjected to life critical fatigue loads during service. Near-α titanium alloy IMI 834 is one candidate aero-engine material that is used as high-pressure compressor discs due to its superior fatigue strength and creep resistance. The effect of heat treatment on the microstructure and high-cycle fatigue behaviour of the material has been studied and reported here. The alloy was solution-heat-treated at 1060 °C and subsequently quenched in different media. A strong effect of quench media (cooling rate) on high-cycle fatigue life has been observed. Fractographic investigations were performed to correlate the fracture micro-mechanism with heat treatment. Further, a generalized stress-life model has been deduced from the fatigue data and integrated with finite element analysis to develop a fatigue model for the alloy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Lütjering G, Williams J C, and Gysler A, in Microstructure and Properties of Materials (2000), vol. 2, pp. 1–77.

  2. Bania P J, Hutt A J, and Adams R E, in Beta Titanium Alloys in the 1990’s (1993).

  3. Welsch G, Boyer R, and Collings E W (eds) Materials Properties Handbook: Titanium Alloys, ASM International, Cleveland (1993).

    Google Scholar 

  4. Cowles B A, Int J Fract 80 (1996) 147.

    CAS  Article  Google Scholar 

  5. Peters M, Lütjering G, and Ziegler G, Zeitschrift für Metallkunde 74 (1983), 274.

    CAS  Google Scholar 

  6. Du Z, Xiao S, Xu L, Tian J, Kong F, and Chen Y, Mater Des 55 (2014) 183.

    CAS  Article  Google Scholar 

  7. Neal D F, in Titanium Science and Technology, (eds) Lutjering G, Zwicker U, and Ansd Bunk W, DGM, Oberursel Germany (1985), vol. 4, pp. 2419–2424.

  8. Sha W, and Malinov S, Titanium Alloys: Modelling of Microstructure, Properties and Applications, Elsevier, Amsterdam (2009).

    Book  Google Scholar 

  9. Wu G Q, Shi C L, Sha W, Sha A X, and Jiang H R, Mater Des 46 (2013) 668.

    CAS  Article  Google Scholar 

  10. Ivanova S G, Biederman R R, and Sisson R D, J Mater Eng Perform 11 (2002) 226.

    CAS  Article  Google Scholar 

  11. Zuo J H, Wang Z G, and Han E H, Mater Sci Eng A 473 (2008) pp.147.

    Article  Google Scholar 

  12. Lütjering G, and Williams J C, Titanium. Springer, Berlin (2007).

    Google Scholar 

  13. Wagner L and Lütjering G, in Titanium, Science and Technology, Les Editions de Physique (1988) p. 345.

  14. Ivanova S G, Cohen F S, Biederman R R, and Sisson Jr R D, Role of Microstructure in the Mean Stress Dependence of Fatigue Strength in Ti–6Al–4V alloy, Worcester Polytechnic Institute, Worcester (1999).

    Google Scholar 

  15. Peters M, Gysler A, Lütjering G. in Titanium’80 Science and Technology (eds) Kimura H and Izumi O, AIME, New York (1980), pp. 1777–1786.

  16. Wu Z, Kou H, Tang L, Chen W, Han X, Deng Y, Tang B, and Li J, Eng Fract Mech 235 (2020) 107129.

    Article  Google Scholar 

  17. Singh N, and Singh V, Mater Sci Eng A 325 (2002) 324.

    Article  Google Scholar 

  18. Hardt S, Maier HJ, and Christ HJ, Int J Fatigue 21 (1999) 779.

    CAS  Article  Google Scholar 

  19. Golden P J, John R, and Porter III W J, Procedia Eng 2 (2010) 1839.

    Article  Google Scholar 

  20. Furuya Y, and Takeuchi E, Mater Sci Eng A 598 (2014) 135.

    CAS  Article  Google Scholar 

  21. Neal D F, and Blenkinsop P A, Acta Metallurgica 24 (1976) 59.

    CAS  Article  Google Scholar 

  22. Ramanujan R V, and Maziasz P J, Metall Mater Trans A 27 (1996) 1661.

    Article  Google Scholar 

  23. Bywater K A, and Christian J W, Philos Mag 25 (1972) 1249.

    CAS  Article  Google Scholar 

  24. Balasundar I, Raghu T, and Kashyap B P, Mater Perform Charact 8 (2019) 932.

    CAS  Google Scholar 

  25. Semiatin S L, Metall Mater Trans A (2020) 1–33.

  26. Lucas J J, in Titanium Science and Technology (eds) Jaffee R I and Burte H M, Plenum Press, New York, NY (1973), vol. 3, pp. 2081–2095.

  27. Nalla R K, Ritchie R O, Boyce B L, Campbell J P, and Peters J O, Metall Mater Trans A 33 (2002) 899.

    Article  Google Scholar 

  28. Brown C W, and Hicks M A, Fatigue Fract Eng Mater Struct 6 (1983) 67.

    Article  Google Scholar 

  29. Wang Q Y, Bathias C, Kawagoishi N, and Chen Q, Int J Fatigue 24 (2002) 1269.

    CAS  Article  Google Scholar 

  30. Xue H, Gao T, Sun Z, and Zhang X, in MATEC Web of Conferences, EDP Sciences (2018), vol. 165, p. 20003.

  31. Yadav V K, Gaur V, and Singh I V, Mater Sci Eng A 779 (2020) 139116.

    CAS  Article  Google Scholar 

  32. Kondo Y, Sakae C, Kubota M, and Kudou T, Fatigue Fract Eng Mater Struct 26 (2003) 675.

    CAS  Article  Google Scholar 

  33. Peters J O, and Lütjering G, Metall Mater Trans A 32 (2001) 2805.

    Article  Google Scholar 

  34. Sinha V, Mills M J, Williams J C, and Spowart J E, Metall Mater Trans A37 (2006) 1507.

    Article  Google Scholar 

  35. Basquin O H, in Proc Am Soc Test Mater (1910), vol. 10, pp. 625–630.

  36. Stephens R I, Fatemi A, Stephens R R, and Fuchs H O, Metal Fatigue in Engineering, Wiley, New York (2001).

    Google Scholar 

  37. Ellyin F, in Fatigue Damage, Crack Growth and Life Prediction. Springer, Dordrecht (1997), pp. 145–178.

  38. Meyers M A, and Chawla K K, Mechanical Behavior of Materials, Cambridge University Press, Cambridge (2008).

    Book  Google Scholar 

  39. Morrow J, in Internal Friction, Damping, and Cyclic Plasticity. ASTM International (1965).

  40. Naglakshmi G, and Kumar V, High temperature fatigue crack growth behavior of IMI 834 Ti alloy, DMRL Technical Report No. 371 (2005).

Download references

Acknowledgements

The constant support and encouragement from Dr. G. Madhusudan Reddy, Director and Dr. T. K. Nandy, Associate Director, DMRL, is gratefully acknowledged. Technical discussions on Ti alloys with Dr. S. Banumathy, DMRL, are also acknowledged. Mr. S. Ahmad, DMRL and his team is acknowledged for timely availability of fatigue specimens for testing. Thanks are also due to Dr. Vikas Kumar (Former Director, DMRL) and Dr. D.V.V. Satyanarayana, Sc ‘G’, Head, Mechanical Behaviour Group, DMRL, for their guidance and support in executing this study. The authors would also like to thank DRDO, India, for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalaj Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: MATLAB Code

Appendix: MATLAB Code

figure a

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhandari, L., Kumar, J., Balasundar, I. et al. Variability in Fatigue Life of Near-α Titanium Alloy IMI 834. Trans Indian Inst Met 74, 979–989 (2021). https://doi.org/10.1007/s12666-021-02210-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02210-z

Keywords

  • IMI 834
  • Heat treatment
  • High-cycle fatigue
  • Stress-life model